
bnlearn: Practical Bayesian Networks in R
Marco Scutari

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland
scutari@idsia.ch
July 9, 2019

Abstract
The tutorial aims to introduce the basics of Bayesian network learning and inference using bnlearn and real-world

data to explore a typical data analysis workflow for graphical modelling. Key points will include:
• preprocessing the data;
• learning the structure and the parameters of a Bayesian network;
• using the network as a predictive model;
• using the network for inference;
• validating the network by contrasting it with external information.
bnlearn reference version: 4.5-20190701.

Contents
Table of Contents 1

A Quick Introduction 1
Bayesian Networks . 1
The bnlearn Package . 5

A Bayesian Network Analysis of Malocclusion Data 9
The Data . 9
Preprocessing and Exploratory Data Analysis . 10

Model #1: a Static Bayesian Network as a Difference Model 15
Learning the Bayesian Network . 15
Model Validation . 26

Model #2: a Dynamic Bayesian Network 30
Learning the Structure . 30
Model Averaging in Structure Learning . 32
Learning the Parameters . 34
Model Validation and Inference . 34

That’s all folks! Thanks! 37

Table of Contents

A Quick Introduction
Bayesian Networks
Definitions

Bayesian networks (BNs) are defined by:

• a network structure, a directed acyclic graph G, in which each node vi ∈ V corresponds to a random variable Xi;
• a global probability distribution X (with parameters Θ), which can be factorised into smaller local probability

distributions according to the arcs present in the graph.

The main role of the network structure is to express the conditional independence relationships among the variables in
the model through graphical separation, thus specifying the factorisation of the global distribution:

P(X) =
N∏
i=1

P(Xi | ΠXi
) where ΠXi

= {parents of Xi}.

Each local distribution has its own parameter set ΘXi
; and

⋃
ΘXi

is much smaller than Θ because many parameter
are fixed by the fact that the variables they belong to are independent.

1

mailto:scutari@idsia.ch

So the first component is a directed acyclic graph like this:

A

E

O R

S

T
And the implication is that:

P(A,S,E,O,R,T) = P(A) P(S) P(E | A,S) P(O | E) P(R | E) P(T | O,R)

The second component of a BN is the probability distribution P(X). The choice should be such that the BN:

• can be learned efficiently from data;
• is flexible (it can encode a reasonable variety of phenomena);
• is easy to query to perform inference.

The three most common choices in the literature (by far), are:

• discrete BNs, in which X and the Xi | ΠXi
are multinomial; and the ΘXi

are the conditional probabilities

πik|j = P(Xi = k | ΠXi = j).

• Gaussian BNs (GBNs), in which X is multivariate normal and the Xi | ΠXi are univariate normals defined by
the linear regression model

Xi = µXi + ΠXiβXi
+ εXi , εXi ∼ N(0, σ2

Xi
).,

• Conditional linear Gaussian BNs (CLGBNs), in which X is a mixture of multivariate normals and the Xi | ΠXi

are either multinomial, univariate normal or mixtures of normals.
– Discrete Xi are only allowed to have discrete parents (denoted ∆Xi), are assumed to follow a multinomial

distribution parameterised with conditional probability tables;
– continuous Xi are allowed to have both discrete and continuous parents (denoted ΓXi

, ∆Xi
∪ ΓXi

= ΠXi
),

and their local distributions are

Xi | ΠXi
∼ N

(
µXi,δXi

+ ΓXi
βXi,δXi

, σ2
Xi,δXi

)
which can be written as a mixture of linear regressions

Xi = µXi,δXi
+ ΓXi

βXi,δXi
+ εXi,δXi

, εXi,δXi
∼ N

(
0, σ2

Xi,δXi

)
,

against the continuous parents with one component for each configuration δXi
of the discrete parents. If Xi

has no discrete parents, the mixture reverts to a single linear regression.

2

Learning

Model selection and estimation of BNs are collectively known as learning, and are usually performed as a two-step
process:

1. structure learning, learning the network structure from the data;
2. parameter learning, learning the local distributions implied by the structure learned in the previous step.

This workflow is Bayesian; given a data set D and if we denote the parameters of the global distribution as X with Θ,
we have

P(M | D) = P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

and structure learning is done in practice as

P(G | D) ∝ P(G) P(D | G) = P(G)
∫

P(D | G,Θ) P(Θ | G) dΘ.

Combined with the fact that the local distribution P(D | G,Θ) decomposes into local distributions that depend only on
Xi and its parents ΠXi

P(D | G) =
∫

P(D | G,Θ) P(Θ | G) dΘ =
N∏
i=1

∫
P(Xi | ΠXi

,ΘXi
) P(ΘXi

| ΠXi
) dΘXi

.

Once we have an estimate for G from structure learning, we can identify the local distributions Xi | ΠXi since we know
the parents of each node; and we can estimate their parameter set ΘXi independently from each other. Assuming G is
sparse, each Xi | ΠXi

involves only few variables and thus estimating its parameters is computationally simple.

Inference

Inference on BNs usually consists of conditional probability (CP) or maximum a posteriori (MAP) queries. The general
idea of a CP query is:

1. we have some evidence, that is, we know the values of some variables and we fix the nodes accordingly; and
2. we want to look into the probability of some event involving (a subset of) the other variables conditional on the

evidence we have.

Say we start from a discrete BN with the DAG used above.

3

young 30%

adult 50%

old 20%

A

high 75%

uni 25%

E

emp 95%

self 5%

O

small 24%

big 76%

R

M60%

F 40%

S

car 56%

train 28%

other 16%

T

Graphically a CP query looks like this:

young 35%

adult 57%

old 9%

A

high 0%

uni 100%

E

emp 92%

self 8%

O

small 20%

big 80%

R

M56%

F 44%

S

car 57%

train 27%

other 16%

T

THIS IS THE
EVIDENCE WE
CONDITION ON

THIS IS THE QUERY
NODE WE ARE
INTERESTED IN

On the other hand, the goal of a MAP query is to find the combination of values for (a subset of) the variables in the
network that has the highest probability given some evidence. If the evidence is a partially-observed new individual,

4

then performing a MAP query amounts to a classic prediction exercise.

young

adult

old

A

high 0%

uni 100%

E

emp

self

O

small

big

R

M

F

S

car

train

other

T

THIS IS THE MAP
COMBINATION
OF VALUES

This is more computationally challenging than it sounds because, as a task, it does not decompose along local
distributions.

The bnlearn Package
bnlearn is designed to provide a flexible simulation suite for methodological research and effective and scalable data
analysis tools for working with BNs on real-world data. This is achieved by a modular architecture in which algorithms
are decoupled from model assumptions, to make it possible to mix and match the methods found in the literature.

Data

(data frame)

Learned Network

(class bn)

Expert Knowledge

(priors, whitelist, blacklist, ...)

Learned Parameters

(class bn.fit)

Expert System

(class bn.fit)

Expert Network

(class bn)

Inference

(cpquery and cpdist)

Prediction

(predict)

Simulation

(rbn and cpdist)

Plots

(lattice and Rgraphviz)

BN Repository

(class bn.fit)

bnlearn leverages the modularity of BNs to achieve this goal:

1. learning the structure of the network, or creating one manually, gives an object of class bn that encodes G;
2. learning the parameters for a given structure starts from a bn object and gives an object of class bn.fit that

encodes (G,Θ);
3. inference takes an object of class bn.fit.

Objects of class bn can be created:

• using a model string encoding each node and its parents;
dag = model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")

• using the arc set;

5

arc.set = matrix(c("A", "E",
"S", "E",
"E", "O",
"E", "R",
"O", "T",
"R", "T"),

byrow = TRUE, ncol = 2,
dimnames = list(NULL, c("from", "to")))

dag = empty.graph(c("A", "S", "E", "O", "R", "T"))
arcs(dag) = arc.set

• or by learning them from data.
dag = hc(data)

The anatomy of a bn object (documented in ?"bn class") is as follows: it comprises some metadata on how then bn
object was created ($learning); some relevant graph-theoretic quantities ($nodes, cached for speed); and the arc set
($arcs).

List of 3
$ learning:List of 6
..$ whitelist: NULL
..$ blacklist: NULL
..$ test : chr "none"
..$ ntests : num 0
..$ algo : chr "empty"
..$ args : list()

$ nodes :List of 6
..$ A:List of 4
.. ..$ mb : chr [1:2] "S" "E"
.. ..$ nbr : chr "E"
.. ..$ parents : chr(0)
.. ..$ children: chr "E"
..$ S:List of 4
.. ..$ mb : chr [1:2] "A" "E"
.. ..$ nbr : chr "E"
.. ..$ parents : chr(0)
.. ..$ children: chr "E"
..$ E:List of 4
.. ..$ mb : chr [1:4] "A" "S" "O" "R"
.. ..$ nbr : chr [1:4] "A" "S" "O" "R"
.. ..$ parents : chr [1:2] "A" "S"
.. ..$ children: chr [1:2] "O" "R"
..$ O:List of 4
.. ..$ mb : chr [1:3] "E" "R" "T"
.. ..$ nbr : chr [1:2] "E" "T"
.. ..$ parents : chr "E"
.. ..$ children: chr "T"
..$ R:List of 4
.. ..$ mb : chr [1:3] "E" "O" "T"
.. ..$ nbr : chr [1:2] "E" "T"
.. ..$ parents : chr "E"
.. ..$ children: chr "T"
..$ T:List of 4
.. ..$ mb : chr [1:2] "O" "R"
.. ..$ nbr : chr [1:2] "O" "R"
.. ..$ parents : chr [1:2] "O" "R"
.. ..$ children: chr(0)

$ arcs : chr [1:6, 1:2] "A" "S" "E" "E" ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "from" "to"

- attr(*, "class")= chr "bn"

6

In contrast, a bn.fit object (documented in ?"bn.fit class") is simply a named list with one element for each node,
comprising its parameters (prob for discrete nodes, coef and sd for Gaussian nodes) and the labels of its parents and
children.
survey$R

Parameters of node R (multinomial distribution)

Conditional probability table:

E
R high uni

small 0.25 0.20
big 0.75 0.80

str(survey$R)

List of 4
$ node : chr "R"
$ parents : chr "E"
$ children: chr "T"
$ prob : 'table' num [1:2, 1:2] 0.25 0.75 0.2 0.8
..- attr(*, "dimnames")=List of 2
.. ..$ R: chr [1:2] "small" "big"
.. ..$ E: chr [1:2] "high" "uni"

- attr(*, "class")= chr "bn.fit.dnode"

Objects of class bn.fit can be created:

• by learning the parameters from data using bn.fit();
fitted = bn.fit(dag, data = survey.data)

• by providing the parameters to custom.fit().
A.lv = c("young", "adult", "old")
S.lv = c("M", "F")
E.lv = c("high", "uni")
O.lv = c("emp", "self")
R.lv = c("small", "big")
T.lv = c("car", "train", "other")
A.prob = array(c(0.30, 0.50, 0.20), dim = 3, dimnames = list(A = A.lv))
S.prob = array(c(0.60, 0.40), dim = 2, dimnames = list(S = S.lv))
O.prob = array(c(0.96, 0.04, 0.92, 0.08), dim = c(2, 2),

dimnames = list(O = O.lv, E = E.lv))
R.prob = array(c(0.25, 0.75, 0.20, 0.80), dim = c(2, 2),

dimnames = list(R = R.lv, E = E.lv))
E.prob = array(c(0.75, 0.25, 0.72, 0.28, 0.88, 0.12, 0.64,

0.36, 0.70, 0.30, 0.90, 0.10), dim = c(2, 3, 2),
dimnames = list(E = E.lv, A = A.lv, S = S.lv))

T.prob = array(c(0.48, 0.42, 0.10, 0.56, 0.36, 0.08, 0.58,
0.24, 0.18, 0.70, 0.21, 0.09), dim = c(3, 2, 2),
dimnames = list(T = T.lv, O = O.lv, R = R.lv))

cpt = list(A = A.prob, S = S.prob, E = E.prob, O = O.prob, R = R.prob, T = T.prob)
survey = custom.fit(dag, cpt)

Finally, starting from a bn.fit object we can:

• generate random samples;
rbn(survey, n = 10)

A E O R S T
1 young high emp big M other
2 young high emp big F car
3 adult high emp small F car

7

4 adult high emp big F other
5 adult uni emp big F train
6 adult high emp small M train
7 adult high emp small M train
8 young high emp big F train
9 adult uni self big M car
10 adult high emp big M car

• predict new observations;
newdata = data.frame(A = factor("young", levels = A.lv),

S = factor("F", levels = S.lv),
E = factor("uni", levels = E.lv),
O = factor("self", levels = O.lv),
R = factor("big", levels = R.lv))

predict(survey, node = "T", data = newdata)

[1] car
Levels: car train other

• compute probabilities with CP queries;
cpquery(survey, event = (S == "M") & (T == "car"), evidence = (E == "high"))

[1] 0.3427117

• generate (weighted) observations from arbitrary conditional distributions.
SxT = cpdist(survey, nodes = c("S", "T"), evidence = (E == "high"))
head(SxT)

S T
1 F other
2 F car
3 F other
4 M car
5 M car
6 M car
table(SxT)

T
S car train other

M 1285 621 354
F 800 409 251

For more information and examples, the reference website is bnlearn.com and the books:

8

http://www.bnlearn.com

A Bayesian Network Analysis of Malocclusion Data
Reference: Bayesian Networks Analysis of Malocclusion Data. [arXiv (preprint) | html | pdf | online
supplementary material]
M. Scutari, P. Auconi, G. Caldarelli and L. Franchi (2017).
Scientific Reports, 7(15326).

The problem: Patients affected by Class III malocclusion (characterised by the protrusion of lower dental arch) suffer
from a skeletal imbalance that is established early in life, and that becomes more pronounced during puberty and until
skeletal maturation is complete. Predicting treatment success or failure early in a single Class III patient makes it
easier to correct it, but it is difficult to do just from a small number of morphometric determinants is problematic.
The reason for that is that Class III malocclusion is rarely a consequence of an abnormality in a single craniofacial
component, so individual clinical and radiological measurements are likely to be less indicative than the interplay
between the measurements themselves.

The task:

1. We learn a BN and use it to determine and visualise the interactions among various Class III malocclusion
maxillofacial features during growth and treatment.

2. We test its consistency by verifying some commonly accepted hypotheses on the evolution of these skeletal
imbalances.

3. We show that untreated subjects develop different Class III craniofacial growth patterns as compared to patients
submitted to orthodontic treatment with rapid maxillary expansion and facemask therapy.

4. Among treated patients the CoA segment (the maxillary length) and the ANB angle (the antero-posterior relation
of the maxilla to the mandible) seem to be the skeletal subspaces that receive the main effect of the treatment.

The Data
The data set we will use contains 143 patients with two sets of measurements at ages T1 and T2 (measured in years)
for the following variables:

• Treatment: untreated (NT), treated with bad results (TB), treated with good results (TG).
• Growth: a binary variable with values Good or Bad, determined on the basis of CoGn-CoA.
• ANB: angle between Down’s points A and B (degrees).
• IMPA: incisor-mandibular plane angle (degrees).
• PPPM: palatal plane - mandibular plane angle (degrees).
• CoA: total maxillary length from condilion to Down’s point A (mm).
• GoPg: length of mandibular body from gonion to pogonion (mm).
• CoGo: length of mandibular ramus from condilion to pogonion (mm).

All the measurements are taken from x-ray scans using a set of reference points established using a map like the
following:

9

https://arxiv.org/abs/1702.03862
https://www.nature.com/articles/s41598-017-15293-w
https://www.nature.com/articles/s41598-017-15293-w.pdf
http://www.bnlearn.com/research/scirep17
http://www.bnlearn.com/research/scirep17

load("prepd-ortho.rda")
str(ortho)

'data.frame': 143 obs. of 16 variables:
$ Treatment: Factor w/ 3 levels "NT","TB","TG": 1 1 1 1 1 1 1 1 3 1 ...
$ Growth : Factor w/ 2 levels "Bad","Good": 1 2 1 1 1 2 2 2 1 1 ...
$ ANB : num -5.2 -1.7 -3.1 -1.3 0.4 1.5 -0.1 0.5 0.2 0.2 ...
$ IMPA : num 75.9 77.2 89.8 98.7 90.5 96.9 85.9 92 91.7 82.2 ...
$ PPPM : num 30.2 27 19.8 21.5 26.5 25.2 21.2 19.5 31.1 22.7 ...
$ CoA : num 83.4 91.3 78.6 96.4 83.3 88 85 77.1 88.8 77.5 ...
$ GoPg : num 77.9 84.1 67.3 75.6 74.7 72.8 75.2 65.2 76.2 67.8 ...
$ CoGo : num 50.1 59.2 50.4 65.7 51.3 58 54.9 44.8 53.3 44.5 ...
$ ANB2 : num -8.4 -2.3 -4.7 -2.4 -0.7 0.9 -1.3 0.4 0.8 -2.8 ...
$ IMPA2 : num 71.7 81 83.8 86.6 83.8 95.8 87.7 93.6 92.3 82.6 ...
$ PPPM2 : num 29.1 26.5 16.7 19.4 26.5 24.3 19.4 17.2 30.2 20.1 ...
$ CoA2 : num 84.4 93.9 82.9 110.5 91 ...
$ GoPg2 : num 81.9 84 71.5 96.3 83.5 71.8 76.9 69.3 81.3 82.5 ...
$ CoGo2 : num 53.8 60.6 57.5 83.2 62.3 58.9 57.9 44.9 62 61 ...
$ T1 : num 12 13 9 7 9 14 10 7 11 6 ...
$ T2 : num 17 16 14 16 14 17 13 9 14 17 ...

Preprocessing and Exploratory Data Analysis
Firstly, we create a data frame with the differences for all the variables and with Growth and Treatment.
diff = data.frame(

dANB = ortho$ANB2 - ortho$ANB,
dPPPM = ortho$PPPM2 - ortho$PPPM,

10

dIMPA = ortho$IMPA2 - ortho$IMPA,
dCoA = ortho$CoA2 - ortho$CoA,
dGoPg = ortho$GoPg2 - ortho$GoPg,
dCoGo = ortho$CoGo2 - ortho$CoGo,
dT = ortho$T2 - ortho$T1,
Growth = as.numeric(ortho$Growth) - 1,
Treatment = as.numeric(ortho$Treatment != "NT")

)

The Growth and Treatment variables carry redundant information on the prognosis of the patient, as evidenced by the
difference in the proportions of patients with good Growth between TB and TG.
table(ortho[, c("Treatment", "Growth")])

Growth
Treatment Bad Good

NT 51 26
TB 10 3
TG 24 29

To avoid the confounding that would result from including both variables in the model we re-code Treatment as a
binary variable for which 0 means NT and 1 means either TB or TG. Similarly, we re-code Growth with 0 meaning Bad
and 1 meaning Good.
table(diff[, c("Treatment", "Growth")])

Growth
Treatment 0 1

0 51 26
1 34 32

Since we will be using Gaussian BNs for the analysis, it also interesting to check whether the variables are normally
distributed, at least marginally; and from the plots below that does not seem to be the case for all of them.
par(mfrow = c(2, 3), mar = c(4, 2, 2, 2))
for (var in c("dANB", "dPPPM", "dIMPA", "dCoA", "dGoPg", "dCoGo")) {

x = diff[, var]
hist(x, prob = TRUE, xlab = var, ylab = "", main = "", col = "ivory")
lines(density(x), lwd = 2, col = "tomato")
curve(dnorm(x, mean = mean(x), sd = sd(x)), from = min(x), to = max(x),

add = TRUE, lwd = 2, col = "steelblue")

}

11

dANB

−6 −4 −2 0 2 4

0.
00

0.
10

0.
20

dPPPM

−10 −5 0 5

0.
00

0.
05

0.
10

0.
15

dIMPA

−20 −10 0 5 10 15

0.
00

0.
02

0.
04

0.
06

dCoA

0 5 10 15 20

0.
00

0.
04

0.
08

0.
12

dGoPg

0 5 10 15 20 25

0.
00

0.
04

0.
08

dCoGo

0 5 10 15

0.
00

0.
04

0.
08

Are the variables linked by linear relationships? Some of them are, but not all.
pairs(diff[, setdiff(names(diff), c("Growth", "Treatment"))],

upper.panel = function(x, y, ...) {
points(x = x, y = y, col = "grey")
abline(coef(lm(y ~ x)), col = "tomato", lwd = 2)

},
lower.panel = function(x, y, ...) {

par(usr = c(0, 1, 0, 1))
text(x = 0.5, y = 0.5, round(cor(x, y), 2), cex = 2)

}
)

12

dANB
−

5
0

5

0.11

0.12

0
5

10
20

0.38

0.15

0
5

10 0.07

−4 0 2 4

0.12

−5 0 5

dPPPM

−0.25

−0.3

−0.23

−0.39

−0.19

dIMPA

0.03

−0.07

0

−20 −5 5

−0.08

0 5 10 20

dCoA

0.86

0.79

0.73

dGoPg

0.75

0 5 15

0.82

0 5 10

dCoGo

0.73

−
4

0
2

4
−

20
−

5
5

0
5

15

2 6 10

2
6

10

dT

Finally, we can take a look at whether the variables cluster in any ways since variables that cluster together are more
likely to be linked in the BN.
library(gplots)
diff.delta = sapply(diff[, 1:6], function(x) x / diff$dT)
rho = cor(data.frame(diff.delta, Growth = diff$Growth, Treatment = diff$Treatment))
palette.breaks = seq(0, 1, 0.1)
par(oma = c(2, 2, 2, 1))
heatmap.2(rho, scale = "none", trace = "none", revC = TRUE, breaks = palette.breaks)

13

dC
oG

o

dG
oP

g

dC
oA

dP
P

P
M

dI
M

PA

G
ro

w
th

Tr
ea

tm
en

t

dA
N

B
dANB

Treatment

Growth

dIMPA

dPPPM

dCoA

dGoPg

dCoGo

0 0.2 0.6 1

Value

0
10

20
30

Color Key
and Histogram

C
ou

nt

We can see to clusters in the heatmap: the first comprises dCoGo, dGoPg and dCoA and the second comprises Treatment,
dANB and dCoA. The first cluster is clinically interesting because it includes Treatment and two variables that are both
related to Down’s point A, which gives some clues about where the main effect of the treatment is.
ug = empty.graph(colnames(rho))
amat(ug) = (rho > 0.4) + 0L - diag(1L, nrow(rho))
graphviz.plot(ug, layout = "fdp", shape = "ellipse")

14

dANB

dPPPMdIMPA

dCoA

dGoPg

dCoGo

Growth

Treatment

Model #1: a Static Bayesian Network as a Difference Model
Here we will try to model the data using the differences we save in diff instead of the raw values; and we will use a
GBN treating since all variables are numeric. Modelling differences leads to local distributions that are regression
models of the form

∆Y = µ+ ∆Tβ1 + ∆X1β2 + . . .+ ε∆Y ε∆Y ∼ N(0, σ2
∆Y)

where ∆Y = YT2 − YT1 and so forth for the other regressors. We can rewrite such regression as

∆Y
∆T = µ∗ + ∆X1

∆T β∗2 + . . .+ ε∆Y
∆T

(1)

which is a set of differential equations that models the rates of change whose relationships are assumed to be well
approximated by linear relationships. This formulation, however, still implies the raw values change linearly over time,
because the rate of change depends on the rates of change of other variables but not on time itself. To have a nonlinear
trend we would need

∆Y = µ+ ∆Tβ1 + (∆T)2β2 + . . . =⇒ ∆Y
∆T = µ∗ + ∆Tβ∗2 + . . . =⇒ ∆Y

∆T 2 = β∗2 6= 0. (2)

Furthermore, including the Growth variable means that we can have regression models of the form

∆Y
∆T = µ∗ + Growth

∆T β∗G + Treatment
∆T β∗TR + ∆X1

∆T β∗2 + . . .+ ε∆Y
∆T

(3)

thus allowing for different rates of change depending on whether the patient shows positive developments or not in the
malocclusion and whether he is being treated or not.

Learning the Bayesian Network
Learning the Structure

The first step in learning a BN is learning its structure, that is, the DAG G. We can do that using data (from the
diff data frame) combined with prior knowledge; incorporating the latter reduces the space of the models we will
have to explore and leads to more robust BNs. A straightforward way of doing that is to blacklist arcs that encode
relationships we know not be possible/real (we do not want them in G, even if noisy data might suggest they are real);
and to whitelist arcs that encode relationship we know to exist (we do want them in G, even if they are not apparent
from the data).

A blacklist is just a matrix (or a data frame) with a from and a to columns that lists the arcs we do not want in the
BN.

15

• We blacklist any arc pointing to dT, Treatment and Growth from the orthodontic variables.
• We blacklist the arc from dT to Treatment. This means that whether a patient is treated does not change over

time.
• We blacklist the arc from Growth to dT and Treatment. This means that whether a patient is treated does not

change over time, and it obviously does not change depending on the prognosis.
bl = tiers2blacklist(list("dT", "Treatment", "Growth",

c("dANB", "dPPPM", "dIMPA", "dCoA", "dGoPg", "dCoGo")))
bl = rbind(bl, c("dT", "Treatment"), c("Treatment", "dT"))
bl

from to
[1,] "Treatment" "dT"
[2,] "Growth" "dT"
[3,] "dANB" "dT"
[4,] "dPPPM" "dT"
[5,] "dIMPA" "dT"
[6,] "dCoA" "dT"
[7,] "dGoPg" "dT"
[8,] "dCoGo" "dT"
[9,] "Growth" "Treatment"

[10,] "dANB" "Treatment"
[11,] "dPPPM" "Treatment"
[12,] "dIMPA" "Treatment"
[13,] "dCoA" "Treatment"
[14,] "dGoPg" "Treatment"
[15,] "dCoGo" "Treatment"
[16,] "dANB" "Growth"
[17,] "dPPPM" "Growth"
[18,] "dIMPA" "Growth"
[19,] "dCoA" "Growth"
[20,] "dGoPg" "Growth"
[21,] "dCoGo" "Growth"
[22,] "dT" "Treatment"
[23,] "Treatment" "dT"

A whitelist has the same structure as a blacklist.

• We whitelist the dependence structure dANB → dIMPA ← dPPPM.
• We whitelist the arc from dT to Growth which allows the prognosis to change over time.

wl = matrix(c("dANB", "dIMPA",
"dPPPM", "dIMPA",
"dT", "Growth"),

ncol = 2, byrow = TRUE, dimnames = list(NULL, c("from", "to")))
wl

from to
[1,] "dANB" "dIMPA"
[2,] "dPPPM" "dIMPA"
[3,] "dT" "Growth"

A simple approach to learn G would be to find the network structure with the best goodness-of-fit on the whole data.
For instance, using hc() with the default score (BIC) and the whole diff data frame:
dag = hc(diff, whitelist = wl, blacklist = bl)
dag

Bayesian network learned via Score-based methods

model:
[dT][Treatment][Growth|dT:Treatment][dANB|Growth:Treatment]
[dCoA|dANB:dT:Treatment][dGoPg|dANB:dCoA:dT:Growth]
[dCoGo|dANB:dCoA:dT:Growth][dPPPM|dCoGo][dIMPA|dANB:dPPPM:Treatment]

nodes: 9
arcs: 19

16

undirected arcs: 0
directed arcs: 19

average markov blanket size: 5.33
average neighbourhood size: 4.22
average branching factor: 2.11

learning algorithm: Hill-Climbing
score: BIC (Gauss.)
penalization coefficient: 2.481422
tests used in the learning procedure: 157
optimized: TRUE

To check how hc() actually built the network, and how various arcs were (not) included in G, we can just run the
command above again with debug = TRUE:

--
* starting from the following network:

Random/Generated Bayesian network

model:
[dANB][dPPPM][dCoA][dGoPg][dCoGo][dT][Treatment][dIMPA|dANB:dPPPM]
[Growth|dT]

nodes: 9
arcs: 3

undirected arcs: 0
directed arcs: 3

average markov blanket size: 0.89
average neighbourhood size: 0.67
average branching factor: 0.33

generation algorithm: Empty

* current score: -2938.765
* whitelisted arcs are:

from to
[1,] "dANB" "dIMPA"
[2,] "dPPPM" "dIMPA"
[3,] "dT" "Growth"
* blacklisted arcs are:

from to
[1,] "Treatment" "dT"
[2,] "Growth" "dT"
[3,] "dANB" "dT"
[4,] "dPPPM" "dT"
[5,] "dIMPA" "dT"
[6,] "dCoA" "dT"
[7,] "dGoPg" "dT"
[8,] "dCoGo" "dT"
[9,] "Growth" "Treatment"

[10,] "dANB" "Treatment"
[11,] "dPPPM" "Treatment"
[12,] "dIMPA" "Treatment"
[13,] "dCoA" "Treatment"
[14,] "dGoPg" "Treatment"
[15,] "dCoGo" "Treatment"
[16,] "dANB" "Growth"
[17,] "dPPPM" "Growth"
[18,] "dIMPA" "Growth"
[19,] "dCoA" "Growth"
[20,] "dGoPg" "Growth"
[21,] "dCoGo" "Growth"
[22,] "dT" "Treatment"
[23,] "dIMPA" "dANB"

17

[24,] "dIMPA" "dPPPM"
* caching score delta for arc dANB -> dPPPM (-1.539098).
* caching score delta for arc dANB -> dIMPA (0.856161).
* caching score delta for arc dANB -> dCoA (8.901223).
* caching score delta for arc dANB -> dGoPg (-0.934598).
* caching score delta for arc dANB -> dCoGo (-2.120463).
* caching score delta for arc dPPPM -> dIMPA (-2.846313).
* caching score delta for arc dPPPM -> dCoA (4.291717).
* caching score delta for arc dPPPM -> dGoPg (1.305411).
* caching score delta for arc dPPPM -> dCoGo (9.452469).
* caching score delta for arc dIMPA -> dCoA (-2.435017).
* caching score delta for arc dIMPA -> dGoPg (-2.106127).
* caching score delta for arc dIMPA -> dCoGo (-2.486190).
* caching score delta for arc dCoA -> dIMPA (-1.192979).
* caching score delta for arc dCoA -> dGoPg (93.911397).
* caching score delta for arc dCoA -> dCoGo (68.650076).
* caching score delta for arc dGoPg -> dIMPA (-0.413628).
* caching score delta for arc dGoPg -> dCoGo (56.572414).
* caching score delta for arc dCoGo -> dIMPA (-1.167656).
* caching score delta for arc dT -> dANB (-1.527379).
* caching score delta for arc dT -> dPPPM (0.063080).
* caching score delta for arc dT -> dIMPA (-0.659672).
* caching score delta for arc dT -> dCoA (51.008025).
* caching score delta for arc dT -> dGoPg (76.176115).
* caching score delta for arc dT -> dCoGo (51.756230).
* caching score delta for arc dT -> Growth (1.912126).
* caching score delta for arc Growth -> dANB (9.490576).
* caching score delta for arc Growth -> dPPPM (-2.486674).
* caching score delta for arc Growth -> dIMPA (-0.332326).
* caching score delta for arc Growth -> dCoA (-2.437912).
* caching score delta for arc Growth -> dGoPg (0.391115).
* caching score delta for arc Growth -> dCoGo (2.469922).
* caching score delta for arc Treatment -> dANB (23.927293).
* caching score delta for arc Treatment -> dPPPM (-1.158971).
* caching score delta for arc Treatment -> dIMPA (1.593137).
* caching score delta for arc Treatment -> dCoA (28.348451).
* caching score delta for arc Treatment -> dGoPg (11.934805).
* caching score delta for arc Treatment -> dCoGo (11.530382).
* caching score delta for arc Treatment -> Growth (0.358153).
--
* trying to add one of 45 arcs.

> trying to add dANB -> dPPPM.
> delta between scores for nodes dANB dPPPM is -1.539098.

> trying to add dANB -> dCoA.
> delta between scores for nodes dANB dCoA is 8.901223.
@ adding dANB -> dCoA.

> trying to add dANB -> dGoPg.
> delta between scores for nodes dANB dGoPg is -0.934598.

> trying to add dANB -> dCoGo.
> delta between scores for nodes dANB dCoGo is -2.120463.

> trying to add dPPPM -> dANB.
...

As for plotting G, the key function is graphviz.plot() which provides a simple interface to the Rgraphviz package.
graphviz.plot(dag, shape = "ellipse", highlight = list(arcs = wl))

18

dANB

dPPPM

dIMPA

dCoA

dGoPg dCoGo

dT

Growth

Treatment

However, the quality of dag crucially depends on whether variables are normally distributed and on whether the
relationships that link them are linear; from the exploratory analysis it is not clear that is the case for all of them. We
also have no idea about which arcs represent strong relationships, meaning that they are resistant to perturbations of
the data. We can address both issues using boot.strength() to:

1. resample the data using bootstrap;
2. learn a separate network from each bootstrap sample;
3. check how often each possible arc appears in the networks;
4. construct a consensus network with the arcs that appear more often.

str.diff = boot.strength(diff, R = 200, algorithm = "hc",
algorithm.args = list(whitelist = wl, blacklist = bl))

head(str.diff)

from to strength direction
1 dANB dPPPM 0.590 0.3728814
2 dANB dIMPA 1.000 1.0000000
3 dANB dCoA 0.780 0.6987179
4 dANB dGoPg 0.425 0.8705882
5 dANB dCoGo 0.630 0.8412698
6 dANB dT 0.130 0.0000000

The return value of boot.strength() includes, for each pair of nodes, the strength of the arc that connects them
(say, how often we observe dANB → dPPPM or dPPPM → dANB) and the strength of its direction (say, how often we
observe dANB → dPPPM when we observe an arc at all between dANB and dPPPM). boot.strength() also computes the
threshold that will be used to decide whether an arc is strong enough to be included in the consensus network.
attr(str.diff, "threshold")

[1] 0.555

So, averaged.network() takes all the arcs with a strength of at least 0.555 and returns an averaged consensus
network, unless a different threshold is specified.
avg.diff = averaged.network(str.diff)

Plotting avg.diff withRgraphviz, we can incorporate the information we now have on the strength of the arcs by using
strength.plot() instead of graphviz.plot(). strength.plot() takes the same arguments as graphviz.plot()
plus a threshold and a set of cutpoints to determine how to format each arc depending on its strength.

19

strength.plot(avg.diff, str.diff, shape = "ellipse", highlight = list(arcs = wl))

dANB

dPPPM

dIMPAdCoA

dGoPg dCoGo

dT

GrowthTreatment

How can we compare the averaged network (avg.diff) with the network we originally learned in from all the data
(dag)? The most qualitative way is to plot the two networks side by side, with the nodes in the same positions, and
highlight the arcs that appear in one network and not in the other, or that appear with different directions.
par(mfrow = c(1, 2))
graphviz.compare(avg.diff, dag, shape = "ellipse", main = c("averaged DAG", "single DAG"))

averaged DAG

dANB

dPPPM

dIMPA

dCoA

dGoPg dCoGo

dT

Growth

Treatment

single DAG

dANB

dPPPM

dIMPA

dCoA

dGoPg dCoGo

dT

Growth

Treatment

We can see that the arcs Treatment→ dIMPA, dANB→ dGoPg and dCoGo→ dPPPM appear only in the averaged network,

20

and that dPPPM → dANB appears only in the network we learned from all the data. We can assume that the former
three arcs were hidden by the noisiness of the data combined with the small sample sizes and departures from normality.
The programmatic equivalent of graphviz.compare() is simply called compare(): it can return the number of true
positives (arcs that appear in both networks) and false positives/negatives (arcs that appear in only one of thew two
networks),
compare(avg.diff, dag)

$tp
[1] 16

$fp
[1] 3

$fn
[1] 1

or the arcs themselves, with arcs = TRUE.
compare(avg.diff, dag, arcs = TRUE)

$tp
from to

[1,] "dANB" "dIMPA"
[2,] "dANB" "dCoA"
[3,] "dANB" "dCoGo"
[4,] "dPPPM" "dIMPA"
[5,] "dCoA" "dGoPg"
[6,] "dCoA" "dCoGo"
[7,] "dT" "dCoA"
[8,] "dT" "dGoPg"
[9,] "dT" "dCoGo"

[10,] "dT" "Growth"
[11,] "Growth" "dANB"
[12,] "Growth" "dGoPg"
[13,] "Growth" "dCoGo"
[14,] "Treatment" "dANB"
[15,] "Treatment" "dIMPA"
[16,] "Treatment" "dCoA"

$fp
from to

[1,] "dCoGo" "dPPPM"
[2,] "Treatment" "Growth"
[3,] "dANB" "dGoPg"

$fn
from to

[1,] "dPPPM" "dANB"

But are all the arc directions well established, in light of the fact that the networks are learned with BIC which is score
equivalent? Looking at the CPDAGs for dag and avg.diff (and taking whitelists and blacklists into account), we see
that there are no undirected arcs. All arcs directions are uniquely identified.
undirected.arcs(cpdag(dag, wlbl = TRUE))

from to
avg.diff$learning$whitelist = wl
avg.diff$learning$blacklist = bl
undirected.arcs(cpdag(avg.diff, wlbl = TRUE))

from to

Finally we can combine the compare() and cpdag() to perform a principled comparison in which we say two arcs are
different if they have been uniquely identified being different.

21

compare(cpdag(avg.diff, wlbl = TRUE), cpdag(dag, wlbl = TRUE))

$tp
[1] 16

$fp
[1] 3

$fn
[1] 1

It is also a good idea to look at the threshold with respect to the distribution of the arc strengths: the averaged network
is fairly dense (17 arcs for 9 nodes) and it is difficult to read.
plot(str.diff)
abline(v = 0.75, col = "tomato", lty = 2, lwd = 2)
abline(v = 0.85, col = "steelblue", lty = 2, lwd = 2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold = 0.555

arc strengths

C
D

F
(a

rc
 s

tr
en

gt
hs

)

Hence it would be good to increase the threshold a bit and to drop a few more arcs. Looking at the plot above, two
natural choices for a higher threshold are 0.75 (red dashed line) and 0.85 (blue dashed line) because of the gaps in the
distribution of the arc strengths.
nrow(str.diff[str.diff$strength > attr(str.diff, "threshold") &

str.diff$direction > 0.5,])

[1] 18
nrow(str.diff[str.diff$strength > 0.75 & str.diff$direction > 0.5,])

[1] 15
nrow(str.diff[str.diff$strength > 0.85 & str.diff$direction > 0.5,])

[1] 12

The simpler network we obtain by setting threshold = 0.85 in averaged.network() is shown below; it is certainly
easier to reason with from a qualitative point of view.
avg.simpler = averaged.network(str.diff, threshold = 0.85)
strength.plot(avg.simpler, str.diff, shape = "ellipse", highlight = list(arcs = wl))

22

dANB

dPPPM

dIMPA

dCoA

dGoPgdCoGo

dT

Growth

Treatment

Learning the Parameters

Having learned the structure, we can now learn the parameters. Since we are working with continuous variables, we
choose to model them with a GBN. Hence if we fit the parameters of the network using their maximum likelihood
estimate we have that each local distribution is a classic linear regression.
fitted.simpler = bn.fit(avg.simpler, diff)
fitted.simpler

Bayesian network parameters

Parameters of node dANB (Gaussian distribution)

Conditional density: dANB | Growth + Treatment
Coefficients:
(Intercept) Growth Treatment

-1.560045 1.173979 1.855994
Standard deviation of the residuals: 1.416369

Parameters of node dPPPM (Gaussian distribution)

Conditional density: dPPPM | dCoGo
Coefficients:
(Intercept) dCoGo

0.1852132 -0.2317049
Standard deviation of the residuals: 2.50641

Parameters of node dIMPA (Gaussian distribution)

Conditional density: dIMPA | dANB + dPPPM
Coefficients:
(Intercept) dANB dPPPM
-1.3826102 0.4074842 -0.5018133

Standard deviation of the residuals: 4.896511

Parameters of node dCoA (Gaussian distribution)

23

Conditional density: dCoA | Treatment
Coefficients:
(Intercept) Treatment

3.546753 5.288095
Standard deviation of the residuals: 3.615473

Parameters of node dGoPg (Gaussian distribution)

Conditional density: dGoPg | dCoA + dT
Coefficients:
(Intercept) dCoA dT
-0.6088760 0.6998461 0.8816657

Standard deviation of the residuals: 2.373902

Parameters of node dCoGo (Gaussian distribution)

Conditional density: dCoGo | dCoA + dT + Growth
Coefficients:
(Intercept) dCoA dT Growth

1.5378012 0.5932982 0.5240202 -2.0302255
Standard deviation of the residuals: 2.428629

Parameters of node dT (Gaussian distribution)

Conditional density: dT
Coefficients:
(Intercept)

4.706294
Standard deviation of the residuals: 2.550427

Parameters of node Growth (Gaussian distribution)

Conditional density: Growth | dT
Coefficients:
(Intercept) dT
0.48694013 -0.01728446

Standard deviation of the residuals: 0.4924939

Parameters of node Treatment (Gaussian distribution)

Conditional density: Treatment
Coefficients:
(Intercept)

0.4615385
Standard deviation of the residuals: 0.5002708

We can easily confirm that is the case by comparing the models produced by bn.fit() and lm(), for instance dANB.
fitted.simpler$dANB

Parameters of node dANB (Gaussian distribution)

Conditional density: dANB | Growth + Treatment
Coefficients:
(Intercept) Growth Treatment

-1.560045 1.173979 1.855994
Standard deviation of the residuals: 1.416369
summary(lm(dANB ~ Growth + Treatment, data = diff))

Call:
lm(formula = dANB ~ Growth + Treatment, data = diff)

24

Residuals:
Min 1Q Median 3Q Max

-3.5400 -0.8139 -0.0959 0.7861 5.2861

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.5600 0.1812 -8.609 1.37e-14 ***
Growth 1.1740 0.2440 4.812 3.82e-06 ***
Treatment 1.8560 0.2403 7.724 1.96e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.416 on 140 degrees of freedom
Multiple R-squared: 0.407, Adjusted R-squared: 0.3985
F-statistic: 48.04 on 2 and 140 DF, p-value: < 2.2e-16

Can we have problems with collinearity? In theory it is possible, but it is mostly not an issue in practice with
network structures learning from data. The reason is that if two variables Xj and Xk are collinear, after adding (say)
Xi ← Xj then Xi ← Xk will no longer significantly improve BIC because Xj and Xk provide (to some extent) the
same information on Xi.
library(MASS)

Attaching package: 'MASS'

The following object is masked _by_ '.GlobalEnv':

survey
a three-dimensional multivariate Gaussian.
mu = rep(0, 3)
R = matrix(c(1, 0.6, 0.5,

0.6, 1, 0,
0.5, 0, 1),

ncol = 3, dimnames = list(c("y", "x1", "x2"), c("y", "x1", "x2")))

gradually increase the correlation between the explanatory variables.
for (rho in seq(from = 0, to = 0.85, by = 0.05)) {

update the correlation matrix and generate the data.
R[2, 3] = R[3, 2] = rho
data = as.data.frame(mvrnorm(10000, mu, R))
compare the linear models (full vs reduced).
cat("rho:", sprintf("%.2f", rho), "difference in BIC:",

- 2 * (BIC(lm(y ~ x1 + x2, data = data)) - BIC(lm(y ~ x1, data = data))), "\n")

}#FOR

rho: 0.00 difference in BIC: 9870.203
rho: 0.05 difference in BIC: 8551.938
rho: 0.10 difference in BIC: 7379.812
rho: 0.15 difference in BIC: 6322.481
rho: 0.20 difference in BIC: 5571.485
rho: 0.25 difference in BIC: 4602.393
rho: 0.30 difference in BIC: 4067.692
rho: 0.35 difference in BIC: 3098.379
rho: 0.40 difference in BIC: 2849.008
rho: 0.45 difference in BIC: 2178.99
rho: 0.50 difference in BIC: 1471.634
rho: 0.55 difference in BIC: 1309.206
rho: 0.60 difference in BIC: 1052.316
rho: 0.65 difference in BIC: 615.9787
rho: 0.70 difference in BIC: 330.322
rho: 0.75 difference in BIC: 184.5111

25

rho: 0.80 difference in BIC: -0.09577516
rho: 0.85 difference in BIC: 0.4405036

If parameter estimates are problematic for any reason, we can replace them with a new set of estimates from a different
approach.
fitted.new = fitted.simpler
fitted.new$dANB = list(coef = c(-1, 2, 2), sd = 1.5)
fitted.new$dANB

Parameters of node dANB (Gaussian distribution)

Conditional density: dANB | Growth + Treatment
Coefficients:
(Intercept) Growth Treatment

-1 2 2
Standard deviation of the residuals: 1.5
fitted.new$dANB = penalized::penalized(diff$dANB, penalized = diff[, parents(avg.simpler, "dANB")],

lambda2 = 20, model = "linear", trace = FALSE)
fitted.new$dANB

Parameters of node dANB (Gaussian distribution)

Conditional density: dANB | Growth + Treatment
Coefficients:
(Intercept) Growth Treatment
-1.1175168 0.8037963 1.2224956

Standard deviation of the residuals: 1.469436

Model Validation
There are two main approaches to validate a BN.

1. Looking just at the network structure: if the main goal of learning the BN is to identify arcs and pathways, which
is often the case when the BN is interpreted as a causal model, we can perform what is essentially a path analysis
and studying arc strengths.

2. Looking at the BN as a whole, including the parameters: if the main goal of learning the BN is to use it as an
expert model, then we may like to:

• predict the values of one or more variables for new individuals, based on the values of some other variables;
and

• comparing the results of CP queries to expert knowledge to confirm the BN reflects the best knowledge
available on the phenomenon we are modelling.

Predictive Accuracy

We can measure predictive accuracy of our chosen learning strategy in the usual way, with cross-validation. bnlearn
provides the bn.cv() function for this task, which implements:

• k-fold cross-validation;
• cross-validation with user-specified folds;
• hold-out cross-validation

for:

• structure learning algorithms (the structure and the parameters are learned from data);
• parameter learning algorithms (the structure is provided by the user, the parameters are learned from the data).

The return value of bn.cv() is an object of class bn.kcv (or bn.kcv-list for multiple cross-validation runs, see
?"bn.kcv class") that contains:

• the row indexes for the observations used as the test set;
• a bn.fit object learned from the training data;
• the value of the loss function;
• fitted and predicted values for loss functions that require them.

26

First we check Growth, which encodes the evolution of malocclusion (0 meaning Bad and 1 meaning Good). We check it
transforming it back into discrete variable and computing the prediction error.
xval = bn.cv(diff, bn = "hc", algorithm.args = list(blacklist = bl, whitelist = wl),

loss = "cor-lw", loss.args = list(target = "Growth", n = 200), runs = 10)

err = numeric(10)

for (i in 1:10) {

tt = table(unlist(sapply(xval[[i]], '[[', "observed")),
unlist(sapply(xval[[i]], '[[', "predicted")) > 0.50)

err[i] = (sum(tt) - sum(diag(tt))) / sum(tt)

}#FOR

summary(err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2517 0.2692 0.2867 0.2846 0.3042 0.3147

The other variables are continuous, so we can estimate their predictive correlation instead.
predcor = structure(numeric(6),

names = c("dCoGo", "dGoPg", "dIMPA", "dCoA", "dPPPM", "dANB"))

for (var in names(predcor)) {

xval = bn.cv(diff, bn = "hc", algorithm.args = list(blacklist = bl, whitelist = wl),
loss = "cor-lw", loss.args = list(target = var, n = 200), runs = 10)

predcor[var] = mean(sapply(xval, function(x) attr(x, "mean")))

}#FOR

round(predcor, digits = 3)

dCoGo dGoPg dIMPA dCoA dPPPM dANB
0.850 0.904 0.233 0.922 0.400 0.651
mean(predcor)

[1] 0.6600367

In both cases we use the *-lw variants of the loss functions, which perform prediction using posterior expected values
computed from all the other variables. The base loss functions (cor, mse, pred) predict the values of each node just
from their parents, which is not meaningful when working on nodes with few or no parents.

Confirming with Expert Knowledge

The other way to confirm whether the BN makes sense is to treat it as a working model of the world and to see whether
it expresses key facts about the world that were not used as prior knowledge during learning. (Otherwise we would just
be getting back the information we put in the prior!) Some examples:

1. “An excessive growth of CoGo should induce a reduction in PPPM.”
We test this hypothesis by generating samples for the BN stored in fitted.simpler for both dCoGo and dPPPM
and assuming no treatment is taking place. As dCoGo increases (which indicates an increasingly rapid growth)
dPPPM becomes increasingly negative (which indicates a reduction in the angle assuming the angle is originally
positive.

sim = cpdist(fitted.simpler, nodes = c("dCoGo", "dPPPM"), n = 10^4,
evidence = (Treatment < 0.5))

plot(sim, col = "grey")
abline(v = 0, col = 2, lty = 2, lwd = 2)
abline(h = 0, col = 2, lty = 2, lwd = 2)
abline(coef(lm(dPPPM ~ dCoGo, data = sim)), lwd = 2)

27

−10 −5 0 5 10 15

−
10

−
5

0
5

dCoGo

dP
P

P
M

2. “A small growth of CoGo should induce an increase in PPPM.”
From the figure above, a negative or null growth of CoGo (dCoGo 6 0) corresponds to a positive growth in PPPM
with probability ≈ 0.60. For a small growth of CoGo (dCoGo ∈ [0, 2]) unfortunately dPPPM 6 0 with probability
≈ 0.50 so the BN does not support this hypothesis.

nrow(sim[(sim$dCoGo <= 0) & (sim$dPPPM > 0),]) / nrow(sim[(sim$dCoGo <= 0),])

[1] 0.6354916
nrow(sim[(sim$dCoGo > 0) & (sim$dCoGo < 2) & (sim$dPPPM > 0),]) /

nrow(sim[(sim$dCoGo) > 0 & (sim$dCoGo < 2),])

[1] 0.4895238

3. “If ANB decreases, IMPA decreases to compensate.”
Testing by simulation as before, we are looking for negative values of dANB (which indicate a decrease assuming
the angle is originally positive) associated with negative values of IMPA (same). From the figure below dANB is
proportional to dIMPA, so a decrease in one suggests a decrease in the other; the mean trend (the black line) is
negative for both at the same time.

sim = cpdist(fitted.simpler, nodes = c("dIMPA", "dANB"), n = 10^4, evidence = (Treatment < 0.5))
plot(sim, col = "grey")
abline(v = 0, col = 2, lty = 2, lwd = 2)
abline(h = 0, col = 2, lty = 2, lwd = 2)
abline(coef(lm(dIMPA ~ dANB, data = sim)), lwd = 2)

28

−20 −10 0 10 20

−
6

−
4

−
2

0
2

4

dIMPA

dA
N

B

4. “If GoPg increases strongly, then both ANB and IMPA decrease.”
If we simulate dGoPg, dANB and dIMPA from the Bayesian network assuming dGoPg > 5 (i.e. GoPg is increasing)
we estimate the probability that dANB > 0 (i.e. ANB is increasing) at ≈ 0.70 and that dIMPA < 0 at only ≈ 0.58.

sim = cpdist(fitted.simpler, nodes = c("dGoPg", "dANB", "dIMPA"), n = 10^4,
evidence = (dGoPg > 5) & (Treatment < 0.5))

nrow(sim[(sim$dGoPg > 5) & (sim$dANB < 0),]) / nrow(sim[(sim$dGoPg > 5),])

[1] 0.6916718
nrow(sim[(sim$dGoPg > 5) & (sim$dIMPA < 0),]) / nrow(sim[(sim$dGoPg > 5),])

[1] 0.586038

5. “Therapy attempts to stop the decrease of ANB. If we fix ANB is there any difference treated and untreated patients?”
First, we can check the relationship between treatment and growth for patients that have dANB ≈ 0 without any
intervention (i.e. using the BN we learned from the data).

sim = cpdist(fitted.simpler, nodes = c("Treatment", "Growth"), n = 5 * 10^4, evidence = abs(dANB) < 0.1)
tab = table(TREATMENT = sim$Treatment < 0.5, GOOD.GROWTH = sim$Growth > 0.5)
round(prop.table(tab, margin = 1), 2)

GOOD.GROWTH
TREATMENT FALSE TRUE

FALSE 0.62 0.38
TRUE 0.49 0.51

The estimated P(GOOD.GROWTH | TREATMENT) is different for treated and untreated patients (≈ 0.65 versus ≈ 0.52).

If we simulate a formal intervention (a la Judea Pearl) and externally set dANB = 0 (thus making it independent from
its parents and removing the corresponding arcs), we have that GOOD.GROWTH has practically the same distribution for
both treated and untreated patients and thus becomes independent from TREATMENT. This suggests that a favourable
prognosis is indeed determined by preventing changes in ANB and that other components of the treatment (if any) then
become irrelevant.
avg.mutilated = mutilated(avg.simpler, evidence = list(dANB = 0))
fitted.mutilated = bn.fit(avg.mutilated, diff)
fitted.mutilated$dANB = list(coef = c("(Intercept)" = 0), sd = 0)
sim = cpdist(fitted.mutilated, nodes = c("Treatment", "Growth"), n = 5 * 10^4,

evidence = TRUE)
tab = table(TREATMENT = sim$Treatment < 0.5, GOOD.GROWTH = sim$Growth > 0.5)
round(prop.table(tab, margin = 1), 2)

GOOD.GROWTH
TREATMENT FALSE TRUE

FALSE 0.57 0.43

29

TRUE 0.57 0.43

6. “Therapy attempts to stop the decrease of ANB. If we fix ANB is there any difference treated and untreated patients?”
One way of assessing this is to check whether the angle between point A and point B (ANB) changes between
treated and untreated patients while keeping GoPg fixed.

sim.GoPg = cpdist(fitted.simpler, nodes = c("Treatment", "dANB", "dGoPg"),
evidence = abs(dGoPg) < 0.1)

Assuming GoPg does not change, the angle between point A and point B increases for treated patients (strongly negative
values denote horizontal imbalance, so a positive rate of changes indicate a reduction in imbalance) and decreases for
untreated patients (imbalance slowly worsens over time).
sim.GoPg$Treatment = c("UNTREATED", "TREATED")[as.numeric(sim.GoPg$Treatment > 0.5) + 1L]
mean(sim.GoPg[sim.GoPg$Treatment == "UNTREATED", "dANB"])

[1] -1.041771
mean(sim.GoPg[sim.GoPg$Treatment == "TREATED", "dANB"])

[1] 0.1884618
boxplot(dANB ~ Treatment, data = sim.GoPg)

TREATED UNTREATED

−
4

−
3

−
2

−
1

0
1

2

Treatment

dA
N

B

Model #2: a Dynamic Bayesian Network
This BN was not included in the paper because it does not work as well as model #1 for prediction, while being more
complex. This is inherent to dynamic BNs, that is, BNs that model stochastic processes: each variable is associated to
a different node in each time point being modelled. (Typically, we assume that the process is Markov of order one, so
we have two time points in the BN: t and t− 1.) However, we explore it for the purpose of illustrating how such a BN
can be learned and used in bnlearn.

The data we use for this model are the raw data we stored into ortho at the beginning of the analysis. However, we
choose to use Treatement instead of Growth as the variable to express the fact that subjects may be undertaking
medical treatment. The reason is that Growth is a variable that measures the prognosis at the time of the second
measurement, and its value is unknown at the time of the first measurement; whereas Treatment is the same at both
times.

Learning the Structure
First, we divide the variables in three groups: variables at time t2, variables at time t1 = t2 − 1, and variables that are
time-independent because they take the same value at t1 and t1.

30

const = "Treatment"
t2.variables = grep("2$", names(ortho), value = TRUE)
t2.variables

[1] "ANB2" "IMPA2" "PPPM2" "CoA2" "GoPg2" "CoGo2" "T2"
t1.variables = setdiff(names(ortho), c(t2.variables, const))
t1.variables

[1] "ANB" "IMPA" "PPPM" "CoA" "GoPg" "CoGo" "T1"

Then we introduce a blacklist in which:

• We blacklist all arcs from the clinical variables to T1, T2 and Treatment because we know that the age and the
treatment regime are not dictated by the clinical measurements.

• We blacklist all the arcs going into Treatment and into all the variables at time t1, because we assume that the
arcs between the variables at time t1 are the same as the corresponding variables in time t2 and it’s pointless to
learn them twice.

• We blacklist all the arcs from t2 to t1.
roots = expand.grid(from = setdiff(names(ortho), c("T1", "T2", "Treatment")),

to = c("T1", "T2", "Treatment"), stringsAsFactors = FALSE)
empty.t1 = expand.grid(from = c(const, t1.variables), to = c(const, t1.variables), stringsAsFactors = FALSE)
bl = rbind(tiers2blacklist(list(t1.variables, t2.variables)), roots, empty.t1)

In contrast we only whitelist the arc T1 → T2, since the age at the second measurement is obviously dependent on the
age at the first.
wl = data.frame(from = c("T1"), to = c("T2"))

Finally we can learn the structure of the BN with bl and wl.
dyn.dag = tabu(ortho, blacklist = bl, whitelist = wl)
dyn.dag

Bayesian network learned via Score-based methods

model:
[Treatment][ANB][IMPA][PPPM][CoA][GoPg][CoGo][T1][ANB2|Treatment:ANB]
[T2|Treatment:T1][CoA2|Treatment:CoA:T1:T2]
[CoGo2|ANB:CoA:CoGo:ANB2:CoA2:T2][PPPM2|PPPM:CoGo:CoGo2]
[IMPA2|IMPA:ANB2:PPPM2][GoPg2|CoA:GoPg:ANB2:IMPA2:CoA2:T1:T2]

nodes: 15
arcs: 27

undirected arcs: 0
directed arcs: 27

average markov blanket size: 7.87
average neighbourhood size: 3.60
average branching factor: 1.80

learning algorithm: Tabu Search
score: BIC (cond. Gauss.)
penalization coefficient: 2.481422
tests used in the learning procedure: 747
optimized: TRUE

It is clear that this BN is more complex than the previous one: it has more nodes (15 vs 9), more arcs (27 vs 19) and
thus more parameters (76 vs 37).

The best way of plotting this new model is to start with graphiz.plot() and to customise it with more versatile
commands from the Rgraphviz package. To this end we tell graphviz.plot() not to plot anything since we are just
interested in its return value.
gR = graphviz.plot(dyn.dag, shape = "rectangle", render = FALSE)

Then we group variables (so that they are plotted close together) and we colour them to easily distinguish const,
t1.variables and t2.variables; and we choose to draw the network from left to right instead of top to bottom.

31

sg0 = list(graph = subGraph(const, gR), cluster = TRUE)
sg1 = list(graph = subGraph(t1.variables, gR), cluster = TRUE)
sg2 = list(graph = subGraph(t2.variables, gR), cluster = TRUE)
gR = layoutGraph(gR, subGList = list(sg0, sg1, sg2), attrs = list(graph = list(rankdir = "LR")))
nodeRenderInfo(gR)$fill[t1.variables] = "tomato"
nodeRenderInfo(gR)$fill[t2.variables] = "gold"
renderGraph(gR)

Treatment

ANB

IMPA

PPPM

CoA

GoPg

CoGo

ANB2 IMPA2PPPM2

CoA2

GoPg2CoGo2

T1

T2

As in the previous model, the treatment acts on ANB: the only arcs going out of Treatment are Treatment → ANB2
and Treatment → CoA2. Again both child nodes are related to Down’s point A.

Model Averaging in Structure Learning
We would like to assess the stability of this dynamic BN structure much as we did for the static BN earlier, and we can
do that again with boot.strength() and averated.network().
dyn.str = boot.strength(ortho, R = 200, algorithm = "tabu",

algorithm.args = list(blacklist = bl, whitelist = wl))
plot(dyn.str)

32

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold = 0.5

arc strengths

C
D

F
(a

rc
 s

tr
en

gt
hs

)

dyn.avg = averaged.network(dyn.str)
dyn.avg

Random/Generated Bayesian network

model:
[Treatment][ANB][IMPA][PPPM][CoA][GoPg][CoGo][T1][ANB2|Treatment:ANB]
[T2|Treatment:T1][CoA2|Treatment:CoA:ANB2:T1:T2]
[CoGo2|CoA:CoGo:ANB2:CoA2:T2][PPPM2|PPPM:ANB2:CoGo2]
[IMPA2|IMPA:ANB2:PPPM2][GoPg2|CoA:GoPg:ANB2:IMPA2:CoA2:T1:T2]

nodes: 15
arcs: 27

undirected arcs: 0
directed arcs: 27

average markov blanket size: 7.07
average neighbourhood size: 3.60
average branching factor: 1.80

generation algorithm: Model Averaging
significance threshold: 0.5

The averaged dyn.avg and dyn.dag are nearly identical: they differ by just two arcs. This suggests that structure
learning produces a stable output.
unlist(compare(dyn.dag, dyn.avg))

tp fp fn
25 2 2
par(mfrow = c(1, 2))
graphviz.compare(dyn.dag, dyn.avg, shape = "rectangle")

33

TreatmentANB

IMPA

PPPM

CoA

GoPg

CoGo

ANB2

IMPA2

PPPM2

CoA2

GoPg2

CoGo2

T1

T2

TreatmentANB

IMPA

PPPM

CoA

GoPg

CoGo

ANB2

IMPA2

PPPM2

CoA2

GoPg2

CoGo2

T1

T2

Learning the Parameters
Since Treatment is a discrete variable, the BN is a CLGBN. This means that continuous nodes that have Treatment
as a parent have a different parameterisation than the rest.
dyn.fitted = bn.fit(dyn.avg, data = ortho)
dyn.fitted$ANB2

Parameters of node ANB2 (conditional Gaussian distribution)

Conditional density: ANB2 | Treatment + ANB
Coefficients:

0 1 2
(Intercept) -1.2060815 0.0765252 1.0615742
ANB 0.9381008 0.3836207 0.8726937
Standard deviation of the residuals:

0 1 2
1.548923 1.060644 1.460779
Discrete parents' configurations:

Treatment
0 NT
1 TB
2 TG

As we can see, ANB2 depends on ANB (so, the same variable at the previous time point) and Treatment. ANB is
continuous, so it used as a regressor for ANB2. Treatment is discrete, and determines the components of the mixture of
linear regressions.

Model Validation and Inference
We can ask another set of questions to this new model

1. “How much does ANB shift from the first to the second measurement with different treatment regimes?”
We can generate pairs of (ANB, ANB2) with cpdist() conditional on Treatment being equal to NT, TB and TG and
look at their distribution.

nt = cpdist(dyn.fitted, nodes = c("ANB", "ANB2"), evidence = (Treatment == "NT"))
tb = cpdist(dyn.fitted, nodes = c("ANB", "ANB2"), evidence = (Treatment == "TB"))
tg = cpdist(dyn.fitted, nodes = c("ANB", "ANB2"), evidence = (Treatment == "TG"))

effect = data.frame(
diff = c(nt[, 2] - nt[, 1], tb[, 2] - tb[, 1], tg[, 2] - tg[, 1]),
treatment = c(rep("NT", nrow(nt)), rep("TB", nrow(tb)), rep("TG", nrow(tg)))

)

34

by(effect$diff, effect$treatment, FUN = mean)

effect$treatment: NT
[1] -1.189746
--
effect$treatment: TB
[1] 0.24691
--
effect$treatment: TG
[1] 1.093987
col = c("steelblue", "gold", "tomato")
lattice::densityplot(~ diff, groups = treatment, data = effect, col = col, lwd = 2, bw = 2, ylim = c(0, 0.20),

key = list(text = list(c("untreated", "treated with bad results", "treated with good results")),
col = col, lines = TRUE, corner = c(0.98, 0.98), lwd = 2))

diff

D
en

si
ty

0.05

0.10

0.15

−10 −5 0 5 10

untreated
treated with bad results
treated with good results

We know that therapy attempts to stop the decrease of ANB; and this is consistent with the fact that the distribution
for NT is to the left of that for TB which is to the left of TG. Untreated patient conditions continue to worsen; patients
for which the treatment is not effective do not really improve but their conditions do not worsen either; and patients
for which the treatment is effective improve.

2. “What does the evolution of ANB look like for different treatment regimes as the patient ages?”
Assuming an initial condition of ANB equal to 1 at age 5, we can iteratively predict ANB2 for the current age
+ 3 years to build a trajectory from childhood to adulthood. But this highlights one of the key limitations of
this model: the assumption that probabilistic dependencies are linear means that the trajectory of ANB2 will be
approximately linear as well. That is unrealistic: we would stop the treatment before producing an imbalance in
the other direction, and the growth process is bound to impact the skeletal growth in a non-linear way.

intervals = data.frame(
T1 = c(5, 8, 11, 14, 17),
T2 = c(8, 11, 14, 17, 20),
ANB = c(-1, NA, NA, NA, NA),
ANB2 = c(NA, NA, NA, NA, NA)

)

for (i in seq(nrow(intervals))) {

predictor = data.frame(
Treatment = factor("TG", levels = c("NT", "TB", "TG")),

35

T1 = intervals[i, "T1"],
T2 = intervals[i, "T2"],
ANB = intervals[i, "ANB"]

)

intervals[i, "ANB2"] = predict(dyn.fitted, node = "ANB2", data = predictor,
method = "bayes-lw", from = names(predictor), n = 1000)

if (i < nrow(intervals))
intervals[i + 1, "ANB"] = intervals[i, "ANB2"]

}#FOR

print(intervals)

T1 T2 ANB ANB2
1 5 8 -1.0000000 0.2315971
2 8 11 0.2315971 1.2835656
3 11 14 1.2835656 2.1888112
4 14 17 2.1888112 2.9529142
5 17 20 2.9529142 3.5969233

In contrast, this is the simulated trajectory for an untreated patient with the same initial condition.

T1 T2 ANB ANB2
1 5 8 -1.000000 -2.102978
2 8 11 -2.102978 -3.099703
3 11 14 -3.099703 -4.156215
4 14 17 -4.156215 -5.077588
5 17 20 -5.077588 -5.878899

The simulated trajectory for CoA is more realistic: it slows down with age. This is unlike ANB, and it happens because
CoA2 depends on both T1 and T2. (ANB2 depends on neither.)
intervals = data.frame(

T1 = c(5, 8, 11, 14, 17),
T2 = c(8, 11, 14, 17, 20),
ANB = c(-1, NA, NA, NA, NA),
ANB2 = c(NA, NA, NA, NA, NA),
CoA = c(75, NA, NA, NA, NA),
CoA2 = c(NA, NA, NA, NA, NA)

)

for (i in seq(nrow(intervals))) {

predictor = data.frame(
Treatment = factor("TG", levels = c("NT", "TB", "TG")),
T1 = intervals[i, "T1"],
T2 = intervals[i, "T2"],
ANB = intervals[i, "ANB"],
CoA = intervals[i, "CoA"]

)

to perform a joint prediction, not currently possible with predict().
dist = cpdist(dyn.fitted, nodes = c("ANB2", "CoA2"), evidence = as.list(predictor), method = "lw")
weights = attr(dist, "weights")

intervals[i, "ANB2"] = weighted.mean(dist$ANB2, weights)
intervals[i, "CoA2"] = weighted.mean(dist$CoA2, weights)

if (i < nrow(intervals)) {

intervals[i + 1, "ANB"] = intervals[i, "ANB2"]
intervals[i + 1, "CoA"] = intervals[i, "CoA2"]

}#THEN

36

}#FOR

print(intervals)

T1 T2 ANB ANB2 CoA CoA2
1 5 8 -1.0000000 0.2011732 75.00000 85.42553
2 8 11 0.2011732 1.2494463 85.42553 93.11893
3 11 14 1.2494463 2.1561235 93.11893 98.33098
4 14 17 2.1561235 2.9352986 98.33098 101.38477
5 17 20 2.9352986 3.6210176 101.38477 102.65418

That’s all folks! Thanks!

37

	Table of Contents
	A Quick Introduction
	Bayesian Networks
	The bnlearn Package

	A Bayesian Network Analysis of Malocclusion Data
	The Data
	Preprocessing and Exploratory Data Analysis

	Model #1: a Static Bayesian Network as a Difference Model
	Learning the Bayesian Network
	Model Validation

	Model #2: a Dynamic Bayesian Network
	Learning the Structure
	Model Averaging in Structure Learning
	Learning the Parameters
	Model Validation and Inference

	That's all folks! Thanks!

