mldr-v2

Meta framework for everything machine learning (evaluation, visualization, tuning, wrapping, bagging, ...)

Monolithic package

- Interfaces > 150 learners
 → Dependencies (direct / recursive): 119 / 1436
 → Unit tests take > 2h
 → Continuous integration split into multiple stages, rather unstable

- Most unit tests disabled for CRAN to comply to their policy
 → No tests in reverse dependency checks on CRAN
 → Package developers changed their API and (unknowingly) broke mldr

- High barrier for new contributors
mlr-v2

Missing 00

- S3 reaches its limitations in larger software projects
- Many different container types for results with awkward accessors:
 getBMRAggrPerformances()
- NAMESPACE has > 1200 lines, > 440 exported functions and objects
- Wrappers (pipelines) hard to customize and to work with

Further Design Issues

- Only works on in-memory data
- No nested parallelization
mlr3
- Overcome limitations of S3 with the help of **R6**
 - Truly object-oriented (OO): data and methods together
 - Inheritance
 - Reference semantics

- Embrace **data.table**, both for arguments and for internal data structures
 - Fast operations for tabular data
 - Better support for list columns to arrange complex objects in a tabular structure
 - Reference semantics

- Be **light on dependencies**. Direct and recursive dependencies:
 - R6, data.table, Metrics, lgr
 - Some self-maintained packages (backports, checkmate,...)
Building Blocks
Building Blocks

Task / Data

Training Set

Test Set

Learner

Model

Performance Measure

Prediction

Performance

Repeat = Resample
Tasks

Create your own task

```r
TaskClassif$new("iris", iris, target = "Species")
```

```r
## <TaskClassif:iris> (150 x 5)
## Target: Species
## Properties: multiclass
## Features (4):
```

Retrieve a predefined task from the task dictionary

```r
mlr_tasks

## <DictionaryTask> with 9 stored values
## Keys: boston_housing, german_credit, iris, mtcars, pima, sonar, spam, wine, zoo
```

```r
task = mlr_tasks$get("iris")
```
Learner

→ Retrieve a predefined learner from the learner dictionary

mlr_learners

<DictionaryLearner> with 21 stored values
Keys: classif.debug, classif.featureless, classif.glmnet,
classif.kknn, classif.lda, classif.log_reg, classif.naive_bayes,
classif.qda, classif.ranger, classif.rpart, classif.svm,
classif.xgboost, regr.featureless, regr.glmnet, regr.kknn,
regr.km, regr.lm, regr.ranger, regr.rpart, regr.svm,
regr.xgboost
Learner

Retrieve a predefined learner from the learner dictionary

```r
learner = mlr_learners$get("classif.rpart")
print(learner)
```

```r
## <LearnerClassifRpart:classif.rpart>
## Model: -
## Parameters: xval=0
## Packages: rpart
## Predict Type: response
## Feature types: logical, integer, numeric, character, factor, 
##    ordered
## Properties: importance, missings, multiclass, selected_features,
##    twoclass, weights
```
Learner

→ Querying and setting hyperparameters

```r
# query
learner$param_set
```

```r
## ParamSet:
##              id    class lower upper levels default value
## 1:     minsplit ParamInt     1   Inf             20
## 2:           cp ParamDbl     0     1           0.01
## 3:   maxcompete ParamInt     0   Inf              4
## 4: maxsurrogate ParamInt     0   Inf              5
## 5:     maxdepth ParamInt     1    30             30
## 6:         xval ParamInt     0   Inf             10     0
```

```r
# set
learner$param_set$values = list(xval = 0, cp = 0.1)
```
Learner

→ Training

```r
task = mlr_tasks$get("iris")
learner$train(task, row_ids = 1:120)
```

NB: This changes the learner in-place, model is now stored inside the learner.
Learner

→ Accessing the learner model

learner$model

```r
## n= 120
##
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
##
## 1) root 120 70 setosa (0.41666667 0.41666667 0.16666667)
##   2) Petal.Length< 2.45 50  0 setosa (1.00000000 0.00000000 0.00000000) *
##   3) Petal.Length>=2.45 70 20 versicolor (0.00000000 0.71428571 0.28571429)
##     6) Petal.Length< 4.95 49  1 versicolor (0.00000000 0.97959184 0.02040816) *
##     7) Petal.Length>=4.95 21  2 virginica (0.00000000 0.09523810 0.90476190) *
```

→ Variable importance

learner$importance()

```r
## Petal.Length  Petal.Width  Sepal.Length  Sepal.Width
##     69.42177     65.04211     41.85520     29.11840
```
Predictions

→ Generate predictions

\[
p = \text{learner}\$\text{predict}(\text{task, row_ids = 121:150})
\]

\[
\text{head(as.data.table(p), 3)}
\]

```r
# row_id     truth response
# 1: 121 virginica virginica
# 2: 122 virginica versicolor
# 3: 123 virginica virginica
```

→ Confusion matrix

\[
p\$\text{confusion}
\]

```r
# truth
# response setosa versicolor virginica
# setosa      0        0         0
# versicolor  0        0          5
# virginica   0        0         25
```
Performance Assessment

→ Retrieve a predefined measure from the measure dictionary

```r
measure = mlr_measures$get("classif.acc")
measure
```

```
## <MeasureClassifACC:classif.acc>
## Packages: Metrics
## Range: [0, 1]
## Minimize: FALSE
## Properties: -
## Predict type: response
```

→ Calculate performance

```r
p$score(c("classif.acc", "time_train"))
```

```
# classif.acc  time_train
#  0.8333333  0.0000000
```
Rinse and Repeat
Resample

→ Resampling Object

```r
cv3 = mlr_resamplings$get("cv", param_vals = list(folds = 3))
```

Splits into train/test are efficiently stored and can be accessed with `$train_set(i)` and `$test_set(i)`.

→ Resample a regression tree on the Boston housing data using a 3-fold CV

```r
# string -> object conversion via dictionary
rr = resample("boston_housing", "regr.rpart", cv3)
```

→ Aggregated performance

```r
rr$aggregate("regr.mse")
```

regr.mse
2.973355
Benchmarks

→ Exhaustive grid design

grid = expand_grid(
 tasks = "iris",
 learners = c("classif.featureless", "classif.rpart"),
 resamplings = "cv3"
)
bmr = benchmark(grid, ctrl = list(store_models = TRUE))
aggr = bmr$aggregate("classif.acc")
aggr[, 2:6]

resample_result task_id learner_id resampling_id classif.acc
1: <ResampleResult> iris classif.featureless cv3 0.2866667
2: <ResampleResult> iris classif.rpart cv3 0.9466667
Retrieving objects

```r
aggr$resample_result[[2]]$prediction$confusion
```

<table>
<thead>
<tr>
<th>truth</th>
<th>setosa</th>
<th>versicolor</th>
<th>virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>setosa</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>versicolor</td>
<td>0</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>virginica</td>
<td>0</td>
<td>5</td>
<td>47</td>
</tr>
</tbody>
</table>
Tuning

- Algorithms: Grid Search, Random Search, Simulated Annealing
- In process: Bayesian Optimization, iterated F-racing, EAs
- Budget via class Terminator: iterations, performance, runtime, real time
- Nested resampling via class AutoTuner

```r
ps = ParamSet$new(list(
  ParamInt$new("num.trees", lower = 50, upper = 500),
  ParamInt$new("mtry", lower = 1, upper = 5)
))

at = AutoTuner$new(
  learner = "classif.ranger",
  resampling = "cv3", # inner resampling
  measures = "classif.acc",
  param_set = ps,
  terminator = TerminatorEvaluations$new(10),
  tuner = TunerRandomSearch
)

resample(
  task = "spam",
  learner = at,
  resampling = "holdout" # outer resampling
)
```
Behind the Curtain
Internal Data Structure

All result objects (`resample()`, `benchmark()`, `tuning`, ...) share the same structure:

```
as.data.table(rr)
```

```
## learner       prediction       task     resampling iteration
## 1: <LearnerRegrRpart> <PredictionRegr> <TaskRegr> <ResamplingCV>         1
## 2: <LearnerRegrRpart> <PredictionRegr> <TaskRegr> <ResamplingCV>         2
## 3: <LearnerRegrRpart> <PredictionRegr> <TaskRegr> <ResamplingCV>         3
```

Combining R6 and `data.table`

- Not the objects are stored, but pointers to them
- Inexpensive to work on:
 - `rbind()`: copying R6 objects ≅ copying pointers
 - `cbind()`: `data.table()` over-allocates columns, no copies
 - `[i,]`: lookup row (possibly hashed), create a list of pointers
 - `[j]`: direct access to list element
Control of Execution

➔ Parallelization

```r
future::plan("multicore")
benchmark(grid)
```

- runs each resampling iteration as a job
- also allows nested resampling (although not needed here)

➔ Encapsulation

```r
ctrl = mlr_control(encapsulate_train = "callr")
benchmark(grid, ctrl = ctrl)
```

- Spawns a separate R process to train the learner
- Learner may segfault without tearing down the master session
- Logs are captured
- Possibility to have a fallback learner to create predictions
Out-of-memory Data

- Task stores data in a DataBackend:
 - DataBackendDataTable: Default backend for dense data (in-memory)
 - DataBackendMatrix: Backend for sparse numerical data (in-memory)
 - DataBackendDplyr: Backend for many DBMS (out-of-memory).
 - DataBackendCbind: Combine backends in a `cbind()` fashion (virtual)
 - DataBackendRbind: Combine backends in a `rbind()` fashion (virtual)

- Backends are immutable
 - Filtering rows or selecting columns just modifies the "view" on the data
 - Multiple tasks can share the same backend

- Example: Interface a read-only MariaDB with DataBackendDplyr, add generated features via DataBackendDataTable
Current state

- Preview release uploaded to CRAN
- Started extension packages:
 - mlr3db for additional backends
 - mlr3pipelines to create workflows
 - mlr3learners for recommended learners
 - mlr3tuning for tuning
 - mlr3survival for survival analysis
 - mlr3viz for visualizations
- Planned extensions:
 - forecasting
 - spatio-temporal analysis
 - deep learning with keras
 - connector to Apache Spark

Want to contribute? mlr3.mlr-org.com