compboost

Fast and Flexible Component-Wise Boosting Framework

Daniel Schalk, Janek Thomas, and Bernd Bischl

July 12, 2019

LMU Munich
Working Group Computational Statistics
Use-Case
The Situation

- We own a small booth at the city center that sells beer.
- As we are very interested in our customers’ health, we only sell to customers who we expect to drink less than 110 liters per year.
- To estimate how much a customer drinks, we have collected data from 200 customers in recent years.
- The data includes the beer consumption (in liter), age, sex, country of origin, weight, body size, and 200 characteristics gained from app usage (that have absolutely no influence).
Overview of the Data

<table>
<thead>
<tr>
<th>beer_consumption</th>
<th>gender</th>
<th>country</th>
<th>age</th>
<th>weight</th>
<th>height</th>
<th>app_usage1</th>
<th>...</th>
<th>app_usage200</th>
</tr>
</thead>
<tbody>
<tr>
<td>106.5</td>
<td>m</td>
<td>Seychelles</td>
<td>33</td>
<td>87.17</td>
<td>172.9</td>
<td>0.1680</td>
<td>...</td>
<td>0.1313</td>
</tr>
<tr>
<td>85.5</td>
<td>f</td>
<td>Seychelles</td>
<td>52</td>
<td>89.38</td>
<td>200.4</td>
<td>0.8075</td>
<td>...</td>
<td>0.6087</td>
</tr>
<tr>
<td>116.5</td>
<td>f</td>
<td>Czechia</td>
<td>54</td>
<td>92.03</td>
<td>178.7</td>
<td>0.3849</td>
<td>...</td>
<td>0.5786</td>
</tr>
<tr>
<td>67.0</td>
<td>m</td>
<td>Australia</td>
<td>32</td>
<td>63.53</td>
<td>186.3</td>
<td>0.3277</td>
<td>...</td>
<td>0.3594</td>
</tr>
<tr>
<td>43.0</td>
<td>f</td>
<td>Australia</td>
<td>51</td>
<td>64.73</td>
<td>175.0</td>
<td>0.6021</td>
<td>...</td>
<td>0.7406</td>
</tr>
<tr>
<td>85.0</td>
<td>m</td>
<td>Austria</td>
<td>43</td>
<td>95.74</td>
<td>173.2</td>
<td>0.6044</td>
<td>...</td>
<td>0.4181</td>
</tr>
<tr>
<td>79.0</td>
<td>f</td>
<td>Austria</td>
<td>55</td>
<td>87.65</td>
<td>156.3</td>
<td>0.1246</td>
<td>...</td>
<td>0.4398</td>
</tr>
<tr>
<td>107.0</td>
<td>f</td>
<td>Austria</td>
<td>24</td>
<td>93.17</td>
<td>161.4</td>
<td>0.2946</td>
<td>...</td>
<td>0.6130</td>
</tr>
<tr>
<td>57.0</td>
<td>m</td>
<td>USA</td>
<td>55</td>
<td>76.27</td>
<td>182.5</td>
<td>0.5776</td>
<td>...</td>
<td>0.4927</td>
</tr>
<tr>
<td>89.0</td>
<td>m</td>
<td>USA</td>
<td>16</td>
<td>72.21</td>
<td>203.3</td>
<td>0.6310</td>
<td>...</td>
<td>0.0735</td>
</tr>
</tbody>
</table>
Our Goals

With this data we want to answer the following questions:

- Which of the customers’ characteristics are important to be able to determine the consumption?
- How does the effect of important features look like?
- How does the model behave on unseen data?
What is Component-Wise Boosting?
General Idea

- Sequential fitting of the base-learner b_1, b_2, b_3 on the error / pseudo-residuals of the current ensemble.
- The base-learner with the best fit on the error (measured as mean squared error) is added to the ensemble.
- Results in a weighted sum / additive model over base-learners.
Advantages of Component-Wise Boosting

- Inherent (unbiased) feature selection.
- Resulting model is sparse since important effects are selected first and therefore it is able to learn in high-dimensional feature spaces \((p \gg n)\).
- Parameters are updated iteratively. Therefore, the whole trace of how the model evolves is available.
Base-Learner Paths

What is Component-Wise Boosting?

Daniel Schalk, Janek Thomas, and Bernd Bischl
About Compboost
Most popular package for model-based boosting is \texttt{mboost}:

- Large number of available base-learner and losses.
- Extended to more complex problems:
 - Functional data
 - GAMLSS models
 - Survival analysis
- Extendible with custom base-learner and losses.

So, why another boosting implementation?

- Main parts of \texttt{mboost} are written in \texttt{R} and gets slow for large datasets.
- Complex implementation:
 - Nested scopes
 - Mixture of different \texttt{R} class systems
Fast and flexible framework for model-based boosting:

- With \texttt{mboost} as standard, we want to keep the modular principle of defining custom base-learner and losses.
- Completely written in C++ and exposed by \texttt{Rcpp} to obtain high performance and full memory control.
- \texttt{R} API is written in \texttt{R6} to provide convenient wrapper.
- Major parts of the \texttt{compboost} functionality are unit tested against \texttt{mboost} to ensure correctness.
Small Demonstration
boostLinear() and boostSplines() automatically add univariate linear models or a GAM for all features.

```r
set.seed(618)
cboost = boostSplines(data = beer_data, target = "beer_consumption",
                      loss = LossAbsolute$new(), learning_rate = 0.1, iterations = 5000L,
                      penalty = 10, oob_fraction = 0.3, trace = 2500L)

## 1/5000 risk = 24 oob_risk = 24
## 2500/5000 risk = 0.6 oob_risk = 8.3
## 5000/5000 risk = 0.44 oob_risk = 8.3
##
## Train 5000 iterations in 11 Seconds.
## Final risk based on the train set: 0.44
```
Visualizing the Results

```r
gg1 = cboost$plotInbagVsOobRisk()

gg2 = cboost$plotFeatureImportance()
```
Visualizing the Results

cboost$\texttt{train}(2000L)$

gg1 = cboost$\texttt{plotFeatureImportance}()$

gg2 = cboost$\texttt{plot}("age_spline", \texttt{iters} = c(50, 100, 500, 1000, 2000, 4000))$

country_Czechia_category

age_spline

country_USA_category

country_Australia_category

app_usage70_spline

appp_usage81_spline

app_usage158_spline

app_usage181_spline

country_Seychelles_category

app_usage171_spline

app_usage118_spline

app_usage103_spline

app_usage97_spline

app_usage95_spline

app_usage99_spline

Effect of age_spline

Additive contribution of predictor

<table>
<thead>
<tr>
<th>iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>4000</td>
</tr>
</tbody>
</table>

Small Demonstration

Daniel Schalk, Janek Thomas, and Bernd Bischl
Using the R6 Interface

cboost = Compboost$new(data = beer_data, target = "beer_consumption",
 loss = LossQuantile$new(0.9), learning_rate = 0.1, oob_fraction = 0.3)

cboost$addBaselearner("age", "spline", BaselearnerPSpline)
cboost$addBaselearner("country", "category", BaselearnerPolynomial)

cboost$addLogger(logger = LoggerTime, use_as_stopper = TRUE, logger_id = "time",
 max_time = 2e5, time_unit = "microseconds")

cboost$train(10000, trace = 500)

1/10000 risk = 11 oob_risk = 10 time = 0
500/10000 risk = 7.9 oob_risk = 8.2 time = 22107
1000/10000 risk = 6.3 oob_risk = 6.6 time = 46764
1500/10000 risk = 5.1 oob_risk = 5.4 time = 76091
2000/10000 risk = 4.2 oob_risk = 4.5 time = 112149
2500/10000 risk = 3.5 oob_risk = 3.8 time = 154647
##
Train 2978 iterations in 0 Seconds.
Final risk based on the train set: 3.2
Overview of the Functionality

- **Base-learner**: BaselearnerPolynomial, BaselearnerSpline, BaselearnerCustom, and BaselearnerCustomCpp
- **Loss functions**: LossQuadratic, LossAbsolute, LossQuantile, LossHuber, LossBinomial, LossCustom, and LossCustomCpp
- **Logger/Stopper**: LoggerIteration, LoggerInbagRisk, LoggerOobRisk, and LoggerTime

 → Performance-based early stopping can be applied using the LoggerOobRisk and specifying the relative improvement that should be reached (e.g. 0 for stopping when out of bag risk starts to increase).
Performance Considerations
- Optimizer are parallelized via openmp:

- Take advantage of the matrix structure to speed up the algorithm by reducing the number of repetitive or too expensive calculations.

- Matrices are stored (if possible) as a sparse matrix.
Small Comparison With Mboost

- **Runtime (in minutes):**

<table>
<thead>
<tr>
<th>nrows / ncols</th>
<th>mboost</th>
<th>compboost</th>
<th>compboost (16 threads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000 / 200</td>
<td>21.10 (1)</td>
<td>10.47 (2.02)</td>
<td>0.95 (22.21)</td>
</tr>
<tr>
<td>20000 / 2000</td>
<td>216.70 (1)</td>
<td>83.95 (2.58)</td>
<td>8.15 (26.59)</td>
</tr>
</tbody>
</table>

- **Memory (in GB):**

<table>
<thead>
<tr>
<th>nrows / ncols</th>
<th>mboost</th>
<th>compboost</th>
<th>compboost (16 threads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000 / 200</td>
<td>1.04 (1)</td>
<td>0.28 (3.71)</td>
<td>0.30 (3.47)</td>
</tr>
<tr>
<td>20000 / 2000</td>
<td>8.70 (1)</td>
<td>2.60 (3.35)</td>
<td>2.98 (2.92)</td>
</tr>
</tbody>
</table>

(Comparison was made by just using spline base-learner with 20 knots and 5000 iterations. The numbers in the brackets are the relative values compared to mboost.)
What’s Next?
What’s Next?

- Research on computational aspects of the algorithm:
 - More stable base-learner selection process via resampling
 - Base-learner selection for arbitrary performance measures
 - Smarter and faster optimizers
- Greater functionality:
 - Functional data structures and loss functions
 - Unbiased feature selection
 - Effect decomposition into constant, linear, and non-linear
- Reducing the memory load by applying binning on numerical features.
- Adding hyperparameter tuning by providing a mlr (mlr3) learner API.
- Exposing C++ classes to python.
• Slides are available at:

 www.github.com/schalkdaniel/talk_compboost_useR

• Actively developed on GitHub:

 www.github.com/schalkdaniel/compboost

• Project page:

 www.compboost.org

• JOSS DOI:

 10.21105/joss.00967