MR studies in R

How to use genetics for identifying modifiable risk factors

Daniela Mariosa

Genetic Epidemiology group, IARC

Lyon, France
The method: Mendelian Randomization

Instrumental variable approach when instruments are genetic

Genetic variants are randomly assigned at conception

Genome Wide Association Studies (GWAS)
The method: Mendelian Randomization

Instrumental variable approach when instruments are genetic

Genetic variants are randomly assigned at conception

Genome-Wide Association Studies (GWAS)
The method: Mendelian Randomization

Instrumental variable approach when instruments are genetic

Genetic variants are randomly assigned at conception

Genome-Wide Association Studies (GWAS)
The method: Mendelian Randomization

Instrumental variable approach when instruments are genetic

Genetic variants are randomly assigned at conception

Genome Wide Association Studies (GWAS)

<table>
<thead>
<tr>
<th>SNP</th>
<th>CHR</th>
<th>BP</th>
<th>ChrBp</th>
<th>CA</th>
<th>NCA</th>
<th>BETA</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs10733051</td>
<td>1</td>
<td>167280354</td>
<td>1:167280354</td>
<td>A</td>
<td>G</td>
<td>0.0106</td>
<td>0.0019</td>
</tr>
<tr>
<td>rs10798918</td>
<td>1</td>
<td>333275981</td>
<td>1:333275981</td>
<td>T</td>
<td>C</td>
<td>0.0157</td>
<td>0.0026</td>
</tr>
<tr>
<td>rs10917502</td>
<td>1</td>
<td>19961679</td>
<td>1:19961679</td>
<td>A</td>
<td>G</td>
<td>0.0163</td>
<td>0.0027</td>
</tr>
<tr>
<td>rs10920678</td>
<td>1</td>
<td>190239907</td>
<td>1:190239907</td>
<td>T</td>
<td>C</td>
<td>0.0166</td>
<td>0.0019</td>
</tr>
<tr>
<td>rs10923724</td>
<td>1</td>
<td>119546842</td>
<td>1:119546842</td>
<td>T</td>
<td>C</td>
<td>-0.0112</td>
<td>0.0019</td>
</tr>
</tbody>
</table>
The example: is Obesity a cause of Ovarian Cancer?

2-Sample Mendelian Randomization (2SMR)

1. GWAS results for \textit{BMI} (instrument)
2. GWAS results for \textit{Ovarian Cancer}

<table>
<thead>
<tr>
<th>STEPS</th>
<th>2SMR</th>
<th>Meta-Analysis</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Preparation</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Harmonisation</td>
<td>TwoSampleMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Visualization</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
The example: is Obesity a cause of Ovarian Cancer?

2-Sample Mendelian Randomization (2SMR)

1. GWAS results for *BMI* (instrument)
2. GWAS results for *Ovarian Cancer*

<table>
<thead>
<tr>
<th>STEPS</th>
<th>2SMR</th>
<th>Meta-Analysis</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Preparation</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Harmonisation</td>
<td>TwoSampleMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Visualization</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
The example: is Obesity a cause of Ovarian Cancer?

2-Sample Mendelian Randomization (2SMR)

1. GWAS results for *BMI* (instrument)
2. GWAS results for *Ovarian Cancer*

<table>
<thead>
<tr>
<th>STEPS</th>
<th>2SMR</th>
<th>Meta-Analysis</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Preparation</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Harmonisation</td>
<td>TwoSampleMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Visualization</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
The example: is Obesity a cause of Ovarian Cancer?

2-Sample Mendelian Randomization (2SMR)

1. GWAS results for *BMI* (instrument)
2. GWAS results for *Ovarian Cancer*

<table>
<thead>
<tr>
<th>STEPS</th>
<th>2SMR</th>
<th>Meta-Analysis</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Preparation</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Harmonisation</td>
<td>TwoSampleMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Visualization</td>
<td>TwoSampleMR</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
R package: TwoSampleMR

MR Test
- Inverse variance weighted
- Maximum likelihood
- MR Egger
- Weighted median
- Weighted mode

SNP effect on Body Mass Index (BMI)

SNP effect on Risk of Ovarian Cancer

R package: TwoSampleMR

MR analysis for BMI and Ovarian Cancer

Inverse variance weighted
Maximum likelihood
MR Egger
Weighted median
Weighted mode

Odds Ratio (95% CI) for 5-unit BMI increase

R package: TwoSampleMR

Leave-1-Out Analysis (IVW)

Frequency

Odds Ratio
R package: TwoSampleMR

MR analysis for BMI and Ovarian Cancer

- Inverse variance weighted
- Maximum likelihood
- MR Egger
- Weighted median
- Weighted mode

SNP effect on Body Mass Index (BMI) vs. SNP effect on Risk of Ovarian Cancer

Leave-One-Out Analysis (LLOO)
R package: TwoSampleMR

MR analysis for BMI and Ovarian Cancer

- Inverse variance weighted
- Maximum likelihood
- MR Egger
- Weighted median
- Weighted mode

Leave-1-Out Analysis (IVW)

Odds Ratio (95% CI) for 5-unit BMI increase

Frequency

Odds Ratio
R package: TwoSampleMR

MR Test
- Inverse variance weighted
- Maximum likelihood
- Weighted median
- Weighted mode
- MR Egger

SNP effect on Body Mass Index (BMI)

MR analysis for BMI and Ovarian Cancer
- Inverse variance weighted
- Maximum likelihood
- MR Egger
- Weighted median
- Weighted mode

Odds Ratio (95% CI) for 5-unit BMI increase

Leave-One-Out Analysis (IVW)

Frequency

Odds Ratio
Conclusions on Mendelian randomization

Pros

▶ Easy to perform in R
▶ Genetic information is important
▶ Data availability

Cons

▶ Large sample sizes needed
▶ Assumptions!
Conclusions on Mendelian randomization

Pros

▶ Easy to perform in R
▶ Genetic information is important
▶ Data availability

Cons

▶ Large sample sizes needed
▶ Assumptions!

Questions? mariosad@fellows.iarc.fr