Optimizing children sleeping time using regression and machine learning

MA Alicja Fraś
Poznan University of Economics and Business
Monetary Policy and Financial Markets Department

July 2019
Research data

- 141 observations per child,
- Control variables:
 - child,
 - age in days,
 - weekend (binary),
 - night sleeping time from previous day.
Research data

- 141 observations per child,
- Control variables:
 - child,
 - age in days,
 - weekend (binary),
 - night sleeping time from previous day.
Research

• Variables:
 ➢ morning waking time,
 ➢ day nap hours (times and duration),
 ➢ extra nap (binary),
 ➢ night sleeping time,
 ➢ total sleeping hours (night + nap).

• Methods:
 ➢ caret package,
 ➢ neural networks: random forest and boosting,
 ➢ GLM.
Research

• Variables:
 ➢ morning waking time,
 ➢ day nap hours (times and duration),
 ➢ extra nap (binary),
 ➢ night sleeping time,
 ➢ total sleeping hours (night + nap).

• Methods:
 ➢ caret package,
 ➢ neural networks: random forest and boosting,
 ➢ GLM.
The first approach: night sleeping time prediction

Night sleeping time = \(\alpha_0 + \alpha_1 \times \) morning waking time +
\(\alpha_2 \times \) day nap hours (duration) +
\(\alpha_3 \times \) extra nap (binary) +
\(\alpha_4 \times \) child +
\(\alpha_5 \times \) lagged night sleeping time +
\(\alpha_6 \times \) age +
\(\alpha_7 \times \) weekend
The first approach: night sleeping time prediction

\[\text{Night sleeping time} = \alpha_0 + \alpha_1 \times \text{morning waking time} + \]
\[\alpha_2 \times \text{day nap hours (duration)} + \]
\[\alpha_3 \times \text{extra nap (binary)} + \]
\[\alpha_4 \times \text{child} + \]
\[\alpha_5 \times \text{lagged night sleeping time} + \]
\[\alpha_6 \times \text{age} + \]
\[\alpha_7 \times \text{weekend} \]
The first approach: night sleeping time prediction

<table>
<thead>
<tr>
<th>Coefficients:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
</tr>
<tr>
<td>16.098013</td>
</tr>
<tr>
<td>child_no2</td>
</tr>
<tr>
<td>-1.019693</td>
</tr>
<tr>
<td>age_days</td>
</tr>
<tr>
<td>-0.001323</td>
</tr>
<tr>
<td>was_extra_nap</td>
</tr>
<tr>
<td>-0.463951</td>
</tr>
<tr>
<td>night_sleeeping_time_lag</td>
</tr>
<tr>
<td>0.191926</td>
</tr>
<tr>
<td>morning_waking_time</td>
</tr>
<tr>
<td>0.441198</td>
</tr>
<tr>
<td>noon_sleepping_hours</td>
</tr>
<tr>
<td>0.006336</td>
</tr>
</tbody>
</table>

One hour earlier wake up in the morning

=>

26 minutes earlier sleeping time in the evening
The first approach: night sleeping time prediction

- Best night sleeping time prediction with random forest
- Simulation: subtract one hour for the morning sleeping time in the dataset and predict evening sleeping time
- Night sleeping time moved from 21:20 to 21:17
The first approach: night sleeping time prediction

- Best night sleeping time prediction with **random forest**
- Simulation: subtract one hour for the morning sleeping time in the dataset and predict evening sleeping time
- Night sleeping time moved from 21:20 to 21:17
The second approach: total sleeping time prediction

\[Total \, sleeping \, time = \alpha_0 + \]
\[\alpha_1 \times \text{morning waking time} + \]
\[\alpha_2 \times \text{day nap hours (duration)} + \]
\[\alpha_3 \times \text{extra nap (binary)} + \]
\[\alpha_4 \times \text{night sleeping time} + \]
\[\alpha_5 \times \text{child} + \]
\[\alpha_6 \times \text{lagged night sleeping time} + \]
\[\alpha_7 \times \text{age} + \]
\[\alpha_8 \times \text{weekend} \]
The second approach: total sleeping time prediction

• Best total sleeping time prediction with **boosting**

• Simulation:

 ➢ morning sleeping time – 1

 ➢ night sleeping time – 1

 ➢ predict total sleeping hours

• Total sleeping hours decreased from 11 hours and 23 minutes to 11 hours and 5 minutes.
The second approach: total sleeping time prediction

- Best total sleeping time prediction with **boosting**
- Simulation:
 - morning sleeping time – 1
 - night sleeping time – 1
 - predict total sleeping hours
- Total sleeping hours decreased from 11 hours and 23 minutes to 11 hours and 5 minutes.
Conclusions

• I was wrong.
• It is hard to predict, when will the kids finally fall asleep.
• It is the best to let our kids sleep as long as they want to.
Questions?

alicja.m.fras@gmail.com