
Shiny’s Holy Grail
Interactivity with reproducibility

Joe Cheng (@jcheng)
useR! 2019

Shiny: Interactive webapps in R

Shiny: Interactive webapps in R

Shiny: Interactive webapps in R

• Allow users to quickly explore different parameter values,
dimensions, models/algorithms

• Faster, more visceral iteration than modifying/rerunning a
traditional R script or R Markdown report/notebook

• Great for collaboration with domain experts with no R
expertise—no need for direct interaction with R

Demo

https://jcheng.shinyapps.io/shinymeta-user2019-demo1/

But something important is lost

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

• Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

• Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

• Reproducing analyses with Shiny is inconvenient: involves not
just running the app, but re-enacting the same user interactions

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

• Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

• Reproducing analyses with Shiny is inconvenient: involves not
just running the app, but re-enacting the same user interactions

• Although bookmarking state is a thing

https://shiny.rstudio.com/articles/bookmarking-state.html

But something important is lost

Interactive apps are powerful and convenient, but reproducibility
suffers (vs. R scripts or R Markdown reports)

• Outputs are transient and not inherently archivable (compared
to saving the PDF rendering from a report or script)

• Reproducing analyses with Shiny is inconvenient: involves not
just running the app, but re-enacting the same user interactions

• Although bookmarking state is a thing

• When interactivity is not required or desired, the extra code
requirements of Shiny hinder source code clarity

https://shiny.rstudio.com/articles/bookmarking-state.html

The goal: interactivity + reproducibility

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

2. Then, click a button to view/download a reproducible artifact

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

2. Then, click a button to view/download a reproducible artifact

The goal: interactivity + reproducibility

1. First, use interactive app to find interesting results

2. Then, click a button to view/download a reproducible artifact

(You could imagine any number of other ways of bridging
interactivity and reproducibility, but I’ll be focusing on this specific
combination for the rest of the talk.)

The goal: interactivity + reproducibility

Drug research and validation 
Workflows benefit greatly from interactive apps, but analysis
ultimately needs to be provided in a fully reproducible form

Teaching 
Interactive apps to teach statistical concepts, with corresponding
code snippets to teach usage in R

Gadgets/RStudio Add-ins 
Use an interactive user interface to build e.g. a ggplot2 plot,
regular expression, or SQL query, then insert the corresponding
code into the Source editor

Reproducible artifacts

• View an R snippet

iSEE

https://community.rstudio.com/t/shiny-contest-submission-isee-interactive-and-reproducible-exploration-and-visualization-of-genomics-data/25136

Reproducible artifacts

• View an R snippet

• Download standalone .Rmd or .R file

{} report.Rmd

Reproducible artifacts

• View an R snippet

• Download standalone .Rmd or .R file

• Download a .zip bundle with source .Rmd/.R, plus…?

• The outcome of running/rendering the source/script

• Data files or supporting source code (functions.R)

{}

data.csv

report.pdf

report.Rmd

Demo

https://jcheng.shinyapps.io/shinymeta-user2019-demo2/

Domain logic vs. reactive structure

Domain logic vs. reactive structure

• Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

Domain logic vs. reactive structure

• Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

• Reactive structure is the Shiny-specific server code that makes
that analysis interactive

Domain logic vs. reactive structure

• Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

• Reactive structure is the Shiny-specific server code that makes
that analysis interactive

Shiny app development equals adding reactive structure to your
domain logic.

Domain logic vs. reactive structure

• Domain logic is the essential analysis that our app embodies
(loading, data manipulation, modeling, visualization)

• Reactive structure is the Shiny-specific server code that makes
that analysis interactive

Shiny app development equals adding reactive structure to your
domain logic.

Now we want to take a Shiny app and extract the domain logic
back out of the reactive structure.

Converting R script to Shiny

downloads <- cranlogs::cran_downloads("ggplot2",
 from = Sys.Date() - 365, to = Sys.Date())

downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

Converting R script to Shiny

downloads <- reactive({
 cranlogs::cran_downloads("ggplot2",
 from = Sys.Date() - 365, to = Sys.Date())
})

downloads_rolling <- reactive({
 downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- renderPlot({
 ggplot(downloads_rolling, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Converting R script to Shiny

downloads <- reactive({
 cranlogs::cran_downloads(input$packages,
 from = Sys.Date() - 365, to = Sys.Date())
})

downloads_rolling <- reactive({
 downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- renderPlot({
 ggplot(downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Shiny app

downloads <- reactive({
 cranlogs::cran_downloads(input$packages,
 from = Sys.Date() - 365, to = Sys.Date())
})

downloads_rolling <- reactive({
 downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- renderPlot({
 ggplot(downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

downloads <- reactive({
 cranlogs::cran_downloads(input$packages,
 from = Sys.Date() - 365, to = Sys.Date())
})

downloads_rolling <- reactive({
 downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- renderPlot({
 ggplot(downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Converting Shiny app to R script

Converting Shiny app to R script

downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

R script

downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

Approach 1: Copy and paste

Create and maintain two separate artifacts: Shiny app and R
Markdown report

• 😘 Easy to understand

• 😘 Reproducible code is high fidelity

• 😢 Two copies of code to keep in sync

• 😢 Will not work for more dynamic apps (i.e. not only changing
parameters, but changing instructions)

Approach 2: Lexical analysis

E.g. scriptgloss by Doug Kelkhoff

Automatically generate scripts from app source code, using static
analysis and heuristics

• 😘 Very easy to add to your app

• 😘 Few decisions to make (mostly just what outputs are
interesting)

• 😢 Not all apps can be translated automatically

• 😢 Generated code is not “camera ready”—still contains code
relating only to Shiny structure

https://github.com/dgkf/scriptgloss

Approach 3: Programmatic

Use metaprogramming techniques to write code that serves dual
purposes (execute interactively, and export static code)

• 😘 Generated code is almost “camera ready”

• 😘 Flexible enough to handle highly dynamic Shiny apps

• 😢 Higher learning curve

• 😢 Significant effort to adapt existing apps

Introducing shinymeta
by Joe Cheng and Carson Sievert

shinymeta

shinymeta

This package is experimental

• Not tested by QA (yet)

• Function API is still evolving

shinymeta

This package is experimental

• Not tested by QA (yet)

• Function API is still evolving

“Scientists build to learn; Engineers learn to build.” —Fred Brooks

Using shinymeta

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

1. A new family of reactive objects

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({ 
 cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date()) 
})

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({ 
 cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date()) 
})

• Call downloads() to retrieve the current dataset

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({ 
 cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date()) 
})

• Call downloads() to retrieve the current dataset

• Automatically caches the result until input$package changes

1. A new family of reactive objects

What was wrong with Shiny’s existing reactive objects?

downloads <- reactive({ 
 cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date()) 
})

• Call downloads() to retrieve the current dataset

• Automatically caches the result until input$package changes

• Works well for regular Shiny apps, BUT there’s no easy way for
us to get the code out

1. A new family of reactive objects

With shinymeta:

downloads <- metaReactive({ 
 cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date()) 
})

• A metaReactive does everything a regular reactive does, plus, can
give you its own source code at runtime

With shinymeta:

downloads <- metaReactive({ 
 cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date()) 
}) 
 
> withMetaMode(downloads()) 
cranlogs::cran_downloads(input$package, from =
Sys.Date() - 365, to = Sys.Date()) 

1. A new family of reactive objects

All code inside a metaReactive
block is considered domain logic

With shinymeta:

downloads <- metaReactive({ 
 cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date()) 
}) 
 
> withMetaMode(downloads()) 
cranlogs::cran_downloads(input$package, from =
Sys.Date() - 365, to = Sys.Date()) 

1. A new family of reactive objects

1. A new family of reactive objects

reactive metaReactive
metaReactive2

observe metaObserve
metaObserve2

renderXXX metaRender
metaRender2

1. A new family of reactive objects

reactive metaReactive
metaReactive2

observe metaObserve
metaObserve2

renderXXX metaRender
metaRender2

-2 variants give
you more control

1. A new family of reactive objects

Sometimes metaReactive is too coarse-grained to separate our domain
logic from the Shiny stuff:

> downloads <- metaReactive({ 
+ req(input$package) 
+ cranlogs::cran_downloads(input$package, 
+ from = Sys.Date() - 365, to = Sys.Date())  
+ }) 
 
> withMetaMode(dataset()) 
req(input$package) 
cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date())

1. A new family of reactive objects

Sometimes metaReactive is too coarse-grained to separate our domain
logic from the Shiny stuff:

Not domain logic

> downloads <- metaReactive({ 
+ req(input$package) 
+ cranlogs::cran_downloads(input$package, 
+ from = Sys.Date() - 365, to = Sys.Date())  
+ }) 
 
> withMetaMode(dataset()) 
req(input$package) 
cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date())

1. A new family of reactive objects

Use metaReactive2 to tell shinymeta you don’t want the entire code
chunk, just the part you wrap with metaExpr() and return it

> downloads <- metaReactive2({ 
+ req(input$package) 
+ metaExpr(cranlogs::cran_downloads(input$package, 
+ from = Sys.Date() - 365, to = Sys.Date())) 
+ }) 
 
> withMetaMode(dataset()) 
cranlogs::cran_downloads(input$package, 
 from = Sys.Date() - 365, to = Sys.Date())

Shiny app

downloads <- reactive({
 req(input$package)
 cranlogs::cran_downloads(input$package,
 from = Sys.Date() - 365, to = Sys.Date())
})

downloads_rolling <- reactive({
 downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- renderPlot({
 ggplot(downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Shinymeta app (…almost)

downloads <- metaReactive2({ 
 req(input$package)
 metaExpr(cranlogs::cran_downloads(input$package,
 from = Sys.Date() - 365, to = Sys.Date()))
})

downloads_rolling <- metaReactive({
 downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- metaRender(renderPlot, {
 ggplot(downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Shinymeta app (…almost)

downloads <- metaReactive2({ 
 req(input$package)
 metaExpr(cranlogs::cran_downloads(input$package,
 from = Sys.Date() - 365, to = Sys.Date()))
})

downloads_rolling <- metaReactive({
 downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- metaRender(renderPlot, {
 ggplot(downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

This syntax is weird, sorry

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

2. De-reference reactive values using !!

Use !! to replace some code with its value.

> downloads <- metaReactive2({ 
+ req(input$packages)
+ metaExpr(cranlogs::cran_downloads(input$package,
+ from = Sys.Date() - 365, to = Sys.Date()))
+ })

> withMetaMode(downloads()) 
cranlogs::cran_downloads(input$package,
 from = Sys.Date() - 365, to = Sys.Date())

2. De-reference reactive values using !!

Use !! to replace some code with its value.

> downloads <- metaReactive2({ 
+ req(input$packages)
+ metaExpr(cranlogs::cran_downloads(input$package,
+ from = Sys.Date() - 365, to = Sys.Date()))
+ })

> withMetaMode(downloads()) 
cranlogs::cran_downloads(input$package,
 from = Sys.Date() - 365, to = Sys.Date())

We need the value of input$package here, not
literally input$package

2. De-reference reactive values using !!

Use !! to replace some code with its value.

> downloads <- metaReactive2({ 
+ req(input$packages)
+ metaExpr(cranlogs::cran_downloads(!!input$package,
+ from = Sys.Date() - 365, to = Sys.Date()))
+ })

> withMetaMode(downloads()) 
cranlogs::cran_downloads("ggplot2",
 from = Sys.Date() - 365, to = Sys.Date())

Bang bang!

2. De-reference reactive exprs using !!

2. De-reference reactive exprs using !!

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

2. De-reference reactive exprs using !!

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({ 
+ cranlogs::cran_downloads(!!input$package,  
+ from = Sys.Date() - 365, to = Sys.Date())  
+ })

2. De-reference reactive exprs using !!

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({ 
+ cranlogs::cran_downloads(!!input$package,  
+ from = Sys.Date() - 365, to = Sys.Date())  
+ })

> downloads_rolling <- metaReactive({ 
+ downloads() %>% mutate( 
+ count = zoo::rollapply(count, 7, mean, fill = "extend"))  
+ })

2. De-reference reactive exprs using !!

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({ 
+ cranlogs::cran_downloads(!!input$package,  
+ from = Sys.Date() - 365, to = Sys.Date())  
+ })

> downloads_rolling <- metaReactive({ 
+ downloads() %>% mutate( 
+ count = zoo::rollapply(count, 7, mean, fill = "extend"))  
+ })

> withMetaMode(downloads_rolling()) 
downloads() %>% mutate( 
 count = zoo::rollapply(count, 7, mean, fill = "extend"))

2. De-reference reactive exprs using !!

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({ 
+ cranlogs::cran_downloads(!!input$package,  
+ from = Sys.Date() - 365, to = Sys.Date())  
+ })

> downloads_rolling <- metaReactive({ 
+ !!downloads() %>% mutate( 
+ count = zoo::rollapply(count, 7, mean, fill =
"extend")) 
+ })

> withMetaMode(downloads_rolling()) 
downloads() %>% mutate( 
 count = zoo::rollapply(count, 7, mean, fill = "extend"))

Bang bang!

2. De-reference reactive exprs using !!

Besides inlining values, unquoting has a second essential function: inlining meta-
reactive objects as code

> downloads <- metaReactive({ 
+ cranlogs::cran_downloads(!!input$package,  
+ from = Sys.Date() - 365, to = Sys.Date())  
+ })

> downloads_rolling <- metaReactive({ 
+ !!downloads() %>% mutate( 
+ count = zoo::rollapply(count, 7, mean, fill =
"extend")) 
+ })

> withMetaMode(downloads_rolling()) 
{ 
 cranlogs::cran_downloads("ggplot2", 
 from = Sys.Date() - 365, to = Sys.Date())  
} %>% mutate( 
 count = zoo::rollapply(count, 7, mean, fill = "extend"))

Bang bang!

Shinymeta app (…almost)

downloads <- metaReactive2({ 
 req(input$packages)
 metaExpr(cranlogs::cran_downloads(input$packages,
 from = Sys.Date() - 365, to = Sys.Date()))
})

downloads_rolling <- metaReactive({
 downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- metaRender(renderPlot, {
 ggplot(downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Shinymeta app

downloads <- metaReactive2({ 
 req(input$packages)
 metaExpr(cranlogs::cran_downloads(!!input$packages,
 from = Sys.Date() - 365, to = Sys.Date()))
})

downloads_rolling <- metaReactive({
 !!downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- metaRender(renderPlot, {
 ggplot(!!downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

3. Extract code from selected objects

As we’ve already seen, you can call meta-reactive objects within
withMetaMode() to extract their code.

> downloads <- metaReactive({ 
+ cranlogs::cran_downloads(!!input$package,  
+ from = Sys.Date() - 365, to = Sys.Date())  
+ }) 
> withMetaMode(downloads()) 
cranlogs::cran_downloads("ggplot2", 
 from = Sys.Date() - 365, to = Sys.Date())

3. Extract code from selected objects

As we’ve already seen, you can call meta-reactive objects within
withMetaMode() to extract their code.

But this was just for demo purposes—in most cases you’ll use a
smarter, higher-level function called expandChain().

withMetaMode

• When !! is applied to input$xxx, the value is inlined.

• When !! is applied to a metaReactive read operation, the
corresponding code is inlined.

withMetaMode

• When !! is applied to input$xxx, the value is inlined.

• When !! is applied to a metaReactive read operation, the
corresponding code is inlined.

expandChain

• When !! is applied to input$xxx, the value is inlined.

• When !! is applied to a metaReactive read operation, a new
variable is introduced if one doesn’t already exist.

downloads <- metaReactive2({ 
 req(input$packages)
 metaExpr(cranlogs::cran_downloads(!!input$packages,
 from = Sys.Date() - 365, to = Sys.Date()))
})

downloads_rolling <- metaReactive({
 !!downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
})

output$plot <- metaRender(renderPlot, {
 ggplot(!!downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average”)
})

Example Shinymeta app

depends on

depends on

withMetaMode(output$plot())

ggplot(!!downloads_rolling(), aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

withMetaMode(output$plot())

ggplot({
 # Convert daily data to 7 day rolling average
 !!downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))
}, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

withMetaMode(output$plot())

ggplot({
 # Convert daily data to 7 day rolling average
 !!downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))
}, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

withMetaMode(output$plot())

ggplot({
 # Convert daily data to 7 day rolling average
 {
 # Retrieve a year's worth of daily download data
 cranlogs::cran_downloads("dplyr", from = Sys.Date() -
365, to = Sys.Date())
 } %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))
}, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

withMetaMode(output$plot())

ggplot({
 # Convert daily data to 7 day rolling average
 {
 # Retrieve a year's worth of daily download data
 cranlogs::cran_downloads("dplyr", from = Sys.Date() -
365, to = Sys.Date())
 } %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))
}, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

expandChain(output$plot())

ggplot(!!downloads_rolling(), aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Convert daily data to 7 day rolling average
downloads_rolling <- !!downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Convert daily data to 7 day rolling average
downloads_rolling <- !!downloads() %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

As we expand meta-objects, we create a chain of
variable declarations that grows upwards

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

As we expand meta-objects, we create a chain of
variable declarations that grows upwards

expandChain(output$plot())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

As we expand meta-objects, we create a chain of
variable declarations that grows upwards

🤩

Other features of expandChain

Other features of expandChain

• Can render multiple meta objects, by passing multiple
arguments

Other features of expandChain

• Can render multiple meta objects, by passing multiple
arguments

• Complex graphs of meta-reactive dependencies are
automatically turned into linear code, in the correct order; each
dependency object is inserted above the first object that
needed it

withMetaMode(output$plot())
withMetaMode(output$summary())

ggplot({
 # Convert daily data to 7 day rolling average
 {
 # Retrieve a year's worth of daily download data
 cranlogs::cran_downloads("dplyr", from = Sys.Date() - 365, to =
Sys.Date())
 } %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill = "extend"))
}, aes(date, count)) +
 geom_line() +
 ggtitle("Seven day rolling average")

summary({
 # Retrieve a year's worth of daily download data
 cranlogs::cran_downloads("dplyr", from = Sys.Date() - 365, to =
Sys.Date())
}$count)

expandChain(output$plot(), output$summary())

Retrieve a year's worth of daily download data
downloads <- cranlogs::cran_downloads("dplyr",
 from = Sys.Date() - 365, to = Sys.Date())

Convert daily data to 7 day rolling average
downloads_rolling <- downloads %>%
 mutate(count = zoo::rollapply(count, 7, mean, fill =
"extend"))

ggplot(downloads_rolling, aes(date, count)) +
 geom_line() + ggtitle("Seven day rolling average")

summary(downloads$count)

Using shinymeta

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

4. Options for presenting code to users

Use outputCodeButton() to add a button to a specific output

plotOutput("plot")

4. Options for presenting code to users

Use outputCodeButton() to add a button to a specific output

outputCodeButton(plotOutput("plot"))

4. Options for presenting code to users

Use outputCodeButton() to add a button to a specific output

4. Options for presenting code to users

Display code using displayCodeModal()

4. Options for presenting code to users

Download *.R script/*.Rmd report with downloadButton

Use buildScriptBundle or buildRmdBundle to dynamically
generate .zip bundles

report.Rmd

4. Options for presenting code to users

Download *.R script/*.Rmd report with downloadButton

Use buildScriptBundle or buildRmdBundle to dynamically
generate .zip bundles

report.Rmd

{{variables}}

4. Options for presenting code to users

Download *.R script/*.Rmd report with downloadButton

Use buildScriptBundle or buildRmdBundle to dynamically
generate .zip bundles

buildRmdBundle(
 report_template = "report.Rmd",
 include_files = list("data.csv" = downloads_data),
 vars = list(pkgname = input$package, code = code),
 output_zip_path = out
)

Using shinymeta (recap)

1. You (the app author) identify the domain logic in your app
code so we can separate it from the reactive structure

2. Within that domain logic, you identify references to reactive
values and reactive expressions that need to be replaced
with static values and static code, respectively

3. At runtime, choose which pieces of domain logic to export,
and in what order

4. Present the code to the user (in a window, as a downloadable
script or report, etc.)

Limitations and future directions

• Make expandChain extract input/reactive values as variables

• Formatting of generated code can improve

• In particular, insignificant whitespace within source code is
not preserved

• Compatibility with Shiny async (but should work great with
both bookmarking and modules already)

• So far we’ve only looked at reproducing snapshots of app state,
not necessarily “lab notebook”-style why/how/what over
multiple iterations

Credits

• Special thanks to Adrian Waddell at Roche/Genentech, whose
(in-house) teal framework provided direct inspiration for
shinymeta

• Thanks to Doug Kelkhoff at Roche/Genentech, whose
scriptgloss package provided a valuable counterpoint

• Motivated by functionality built independently by many Shiny
users over the years, including Vincent Nijs (radiant); Eric Hare
and Andee Kaplan (intRo); Xiao Ni (Novartis); Eric Nantz (Eli
Lilly); Kevin Rue, Charlotte Soneson, Federico Marini, and Aaron
Lun (iSEE); Tyler Morgan Wall (skpr)

https://vnijs.github.io/radiant/
http://intro-stats.com
https://community.rstudio.com/t/shiny-contest-submission-isee-interactive-and-reproducible-exploration-and-visualization-of-genomics-data/25136
https://github.com/tylermorganwall/skpr

Thank you!

Package docs: 
https://rstudio.github.io/shinymeta/

Slides and examples from this talk: 
https://github.com/jcheng5/shinymeta-user2019-talk

https://rstudio.github.io/shinymeta/
https://github.com/jcheng5/shinymeta-user2019-talk

Appendix: Metaprogramming

What is metaprogramming?

What is metaprogramming?

Writing code that generates/manipulates code

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc…

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc…

…it also has built-in objects and functions for working with code!

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc…

…it also has built-in objects and functions for working with code!

Objects: symbols, calls, expressions

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc…

…it also has built-in objects and functions for working with code!

Objects: symbols, calls, expressions

Functions: quote(), as.symbol(), call(), substitute()

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc…

…it also has built-in objects and functions for working with code!

Objects: symbols, calls, expressions

Functions: quote(), as.symbol(), call(), substitute()

Functions in the rlang package: expr(), enexpr(), !!

What is metaprogramming?

Writing code that generates/manipulates code

Just like R has built-in objects and functions for working with
character data, numeric data, tabular data, etc…

…it also has built-in objects and functions for working with code!

Objects: symbols, calls, expressions

Functions: quote(), as.symbol(), call(), substitute()

Functions in the rlang package: expr(), enexpr(), !!

(We won’t attempt to cover all this today…)

Creating code objects using quote

dplyr::filter(diamonds, carat >= 3)

Creating code objects using quote

dplyr::filter(diamonds, carat >= 3)

Creating code objects using quote

dplyr::filter(diamonds, carat >= 3)

"dplyr::filter(diamonds, carat >= 3)"

Creating code objects using quote

"dplyr::filter(diamonds, carat >= 3)"

Creating code objects using quote

"dplyr::filter(diamonds, carat >= 3)"

Creating code objects using quote

chr: d p l y r : : f i l t e r (…

quote(dplyr::filter(diamonds, carat >= 3))

Creating code objects using quote

quote(dplyr::filter(diamonds, carat >= 3))

Creating code objects using quote

quote(dplyr::filter(diamonds, carat >= 3))

Creating code objects using quote

dplyr::filter(diamonds, carat >= 3)

quote(dplyr::filter(diamonds, carat >= 3))

Creating code objects using quote

\- ()
 \- ()
 \- `::
 \- `dplyr
 \- `filter
 \- `diamonds
 \- ()
 \- `>
 \- `carat
 \- 3

(Visualized using pryr::call_tree())

quote(dplyr::filter(diamonds, carat >= 3))

Creating code objects using quote

\- ()
 \- ()
 \- `::
 \- `dplyr
 \- `filter
 \- `diamonds
 \- ()
 \- `>
 \- `carat
 \- 3

We can read and write nodes
within this expression tree,
as if it is a list of lists

(Visualized using pryr::call_tree())

rlang::expr(dplyr::filter(diamonds, carat >= 3))

Creating code objects using quote rlang::expr

\- ()
 \- ()
 \- `::
 \- `dplyr
 \- `filter
 \- `diamonds
 \- ()
 \- `>
 \- `carat
 \- 3

We can read and write nodes
within this expression tree,
as if it is a list of lists

The unquoting operator (!!)

The unquoting operator (!!)

> min_carat <- 3 

The unquoting operator (!!)

> min_carat <- 3 

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

The unquoting operator (!!)

> min_carat <- 3 

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)  

The unquoting operator (!!)

> min_carat <- 3 

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)  

> rlang::expr(dplyr::filter(diamonds, carat >= !!min_carat))

The unquoting operator (!!)

> min_carat <- 3 

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)  

> rlang::expr(dplyr::filter(diamonds, carat >= !!min_carat))

dplyr::filter(diamonds, carat >= 3)

The unquoting operator (!!)

> min_carat <- 3 

> rlang::expr(dplyr::filter(diamonds, carat >= min_carat))

dplyr::filter(diamonds, carat >= min_carat)  

> rlang::expr(dplyr::filter(diamonds, carat >= !!min_carat))

dplyr::filter(diamonds, carat >= 3)

Use the unquoting operator to selectively replace quoted
subexpressions (like min_carat) with their actual values

The unquoting operator (!!)

> min_carat <- quote(quantile(diamonds$carat, probs = 0.99))  

The unquoting operator (!!)

> min_carat <- quote(quantile(diamonds$carat, probs = 0.99))  

> rlang::expr(dplyr::filter(diamonds, carat >= !!min_carat))

The unquoting operator (!!)

> min_carat <- quote(quantile(diamonds$carat, probs = 0.99))  

> rlang::expr(dplyr::filter(diamonds, carat >= !!min_carat))

dplyr::filter(diamonds, carat >= quantile(diamonds$carat,probs = 0.99))

The unquoting operator (!!)

> min_carat <- quote(quantile(diamonds$carat, probs = 0.99))  

> rlang::expr(dplyr::filter(diamonds, carat >= !!min_carat))

dplyr::filter(diamonds, carat >= quantile(diamonds$carat,probs = 0.99))

Use the unquoting operator to selectively replace quoted
subexpressions (like min_carat) with other quoted expressions

The unquoting operator (!!)

Further reading

• That’s all we’ll need to know about metaprogramming for the
rest of this talk, but shinymeta works best if you have a solid
grasp on the following:

• Advanced R (Wickham) - chapters on Non-standard evaluation
and Expressions

• The dplyr vignette Programming with dplyr, specifically the
section on quasiquotation

http://adv-r.had.co.nz/Computing-on-the-language.html
http://adv-r.had.co.nz/Computing-on-the-language.html
http://adv-r.had.co.nz/Expressions.html
https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/programming.html#quasiquotation

